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ABSTRACT 

The design of a decision analysis is itself a complex decision 

problem.  In theory, each aspect of analysis, encoding the probability 

density functions of state variables, encoding the von Neuman-Morgenstern 

utility function, and compjting profit lotteries is an experiment.  The 

results of the experiments, the data, are used to update the probabili- 

ties in the primary decision problem.  The economic value of the experi- 

ment is the well known value of imperfect information. 

The drawback to the theoretical approach is that the data are func- 

tions.  Practical methods for encocrng prior distributions over functions 

do not exist.  Therefore, the trad it1'mal approach is to parameterize 

the data. 

Our approach is unique because we show that for an interesting class 

of decision problems, arbitrary parameterization is not necessary.  The 

value of any data depends probabilistically only on the prior covari- 

ances of the posterior means.  For independent state variables this 

quantity reduces to an estimate of how much the mean of a probability 

density function will shift during an experi,,ient. 

With some limitations this result extends to the local risk aver- 

sion coefficient.  The coefficient can be treated as if it were a state 

variable.  Tho value of assessing the complete utility function is then 

proportional to the prior variance jf the posterior coefficient.  Once 

again encoding the potential mean shift is the key to the value of data 

generation. 

The main result for computation is logically separate from the 
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previous ones.  The problem is to find the optimal quantization for a 

single decision variable. Mont«. Carlo samples from the profit or value 

function can be generated for any setting of the decision variable.  For 

a fixed total sample size should *'e sample many times at a few decision 

points or a fev times at many decision points? The answer s that fine 

quantization, implying many decision settings, is alwavs superior. 

However, the expected loss from rough quantization is very small. 

In the final chapter of the thesis we present flow charts which 

show how our results can be applied to the design of a practical deci- 

sion analysis. 
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CHAPTER   1 

OVERVIEW 

1.0    Introduction 

The design of a decision analysis   is  itself a complex decisior 

problem.     This  dissertation addresses   the analyst's decision of how much 

computation and assessment  is economically  justified  for a given primary 

decision problem.     The results are  in  two areas.     In the  first part of 

the  thesis we  extend decision theory  to  cover problems  that can be ap- 

proximated by Taylor series.    These results apply to laige decision 

problems where  complete computation   is   infeasible.     In the second part 

of the thesis we apply the results  to  the  specific decisions of setting 

the  levels of assessment and computation within a decision analysis. 

The practical side of analysis,  problem bounding and analytical  de- 

sign,  has  always been left  to intuition.     To handle extremely complex 

problems,  a more  formal approach  is necessary.    The analyst's  skill at 

problem formulation will never be eliminated, but the approximate  tech- 

niques  developed in this dissertation  should allow him to start with a 

very general representation of  the problem and rationally eliminate  the 

unimportant aspects. 

1.1    Decision Analysis 

Decision analysis  is a practical discipline.     It  rests on   twin 

foundations of decision theory and systems analysis.    The  reader  of  this 

dissertation will need at least an elementary knowledge of Bayosian  de- 

cision  theory.     Excellent introductions   to subjective probability and 

m^-^mmm^m -  ■        - i i  i hirn i     i h < 
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risk preference are given in Howard [2] md Raiffa [6].  Systems theory 

allows us to extend rational analysis to complex problems.  The reader 

should understand the manipulation of matrices and optimization of func- 

tional . 

The state of information ic a fundamental concept in decision anal- 

ysis.  The state of information that concerns us most frequently is g , 

the decision maker's prior knowledge and experience. Another familiar 

state of information in decision analysis is clairvoyance (C.f). The 

clairvoyant knows the exact value of any uncertain variable.  In this 

dissertation we will normally be concerned with the augmented state of 

information (D,£).  If the data D contains no useful information, 

(D,P) reduces to 6 , and if the data is perfect information (D,e) be- 

comes (C.P). 

The relationship of the three states of information can be clari- 

fied using Howard's [2] decision analysis cycle.  In Fig. 1.1 we 

associate t    with the deterministic phase, (D,e) with the probabilistic 

phase, and (C,e) with the informational phase.  Calling the initial 

phaso deterministic Is a mild misnomer since it is the basis for pre- 

liminary probabilistic estimates.  The probability lensity function for 

a state variable can be approximated from the estimates of its me m and 

range.  The profit lottery, the probability density function on the 

value, can be estimated from sensitivity data using Taylor series.  The 

deterministic phase provides the given information for this paper.  The 

probabilist-'c phase encompasses the encoding and computation that we 

wish to design.  The informational phase is only of interest for Its 

role in the three-part analogy. 

Numbers in square brackets refer to List of References. 

2 
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Deterministic 
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Information 
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Figure L.I  States of information within the decision analysis cycle 
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Related Work 

We model computation and assessment as experiments. Almost ^11 

texts on decision theory present one or more special cases of the re- 

sults in Chapters 2 and 3. 

There are very few references that specifical y address the problem 

of the design of a decision analysis.  Howard [2] discusses the general 

philosophy.  He points out that finding the right problem is as impor- 

tant as solving it.  Raiffa and Schlaifer [7] introduce the use of param- 

eters of probability distributions as random variables. Matheson [4] 

proposes a structure which is very similar to ours.  Specifically, he 

introduces the concept that the purpose of analysis is to provide data 

to improve the state of informacion in the primary problem.  The main 

difference between Matheson's work and ours is that we use an approxi- 

mate value function for the primary problem.  The approximation dras- 

tically reduces the required input, making it practical for application 

to complex decision problems. 

Approximate value functions based on Taylor series are introduced 

in Howard [3].  Chapters 2 and 3 are an extension of Howard's structure. 

1.2 Summary of Results 

The thesis begins and ends with examples that illustrate the appli- 

cation of our theorecit U results. The example at the start of Chapter 

2 demonstrates that for certain problems determinisitlc, rather than 

stochastic sensitivities are sufficient to calculate the value of clair- 

voyance.  In Chaprer 'j  we return to the same example to illustrate the 

application of the results from Chapters 2, 3 and 4. 

In Chapter 2 we jolve the single-stage risk-indifferent decision 

4 
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problem which has many decision variables related to many state vari- 

ables through a second order value model. The results are exact for a 

quadratic value function and approximate for a complex value function 

that can be expanded in a Taylor series about the mean of the state 

variables and the deterministic optimum decision.  The expression for 

the value of dita can be decomposed into two parts.  The first is a 

matrix representing the difference between closed and open loop sensi- 

tivities.  Closed 'oop implies the ability to optimize the decision 

variables fl'^^r the state variables are revealed.  The s-jcond is the 

prior covariance of posterior means.  For one state variable this quan- 

tity reduces to the prior variance of the posterior mean, a single 

parameter.  This is a tremendous simplification over the general case 

in which the value of data depends on our prior estimate of the 

posterior probability distribution, a probability distribution over 

probability distributions. 

In Chapter 3 we extend the results of Chapter 2 to include expo- 

nential risk aversion.  The approximate value of clairvoyance derived 

in Section 3.2 is not useful for calculations because it involves third 

and fourth covariances.  However, by considering special cases of the 

value of clairvoyance we derive criteria which must hold for the r .- 

suits of Chapter 2 to be valid.  Finally, we calculate the  ss from 

deliberate suppression of risk preference and the gain from introducing 

the decision maker's true utility function. 

In Chapter 4 we address the question of discretizing a decision 

variable when the value lottery is generated by Monte Carlo simulation. 

The result is that a given numo^r of random samples generates slightly 

  -   - - 
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less ejcpected error when the decision variable  is  finely discietized. 

Regardless of the discretization level,   the expected error is approxi- 

mately proportional  to  the  total number of samples. 

Chapter 5  is best summarized by Fig.   1.2.     Each box represmts a 

stage in  the design of a decision analysis.     Before we can apply our 

techniques,  we need preliminary data.     Then if  the problem is  suitable 

for approximate analysis,  we consider  the encoding,  risk preference 

and computational decisions.    For each state variable  the encoding deci- 

sion is whether  to encode a complete probability density  function or  to 

use our preliminary estimate.    The risk preference alternatives are  to 

use a linear,  exponential or general risk preference  function.    The 

computational alternatives are to stop after the preliminary analysis 

or  to continue with a Monte Carlo  simulation. 

- 
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PRELIMINARY ANALYSIS 

Deterministic  Sensitivities 
Normalization and quadratic approximation 
Encoding of covariances 

CHECKS  OF APPROXIMATIONS 

Determination of  the validity of 
 assumptions 

ITERATIVE  ENCODING OF STATE  VARIABLES 

Input is Rough Data 
Output  is Where  to Encode More Thoroughly 

I 
CHOICE OF RISK PREFERENCE ALTERNATIVE 

. Risk-i-ndifference or Risk-Sensitivity 
Approximate versus Exact Utility 

Functions 

I 
CHOICE OF COMPUTATIONAL ALTERNATIVE 

Stop with Preliminary Analysis or Monte 
Carlo Simulation 

Figure 1.2  Summary of the economics of decision analysis 
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CHAPTER  2 

VALUE OF ANALYSIS  FOR THE RISK-INDIFFERENT DECISION MAKER 

2.0 Introduction 

This chapter begins with a simple example  to  introduce  the concept 

of value of information.     For  the quadratic problem, which arises  in 

practice when  the value  function can be approximated by a second-order 

Taylor series, we prove a general  theorem for the value of data.    This 

theorem is extended  in Chapter  3 and   mplied  in Chapter 5.    At  the end 

of this chapter we discuss how to handle non-quadratic problems and 

deliberate errors. 

2.1 Preliminaries 

In this  section we  introduce  inferential notation and  the general 

terminology  required  to describe a decision problem. 

Notation 

Inferential notation  is well  r.uited  for   this  thesis because  it 

explicitly conditions all probabilities  on a state of  information.    The 

probability density  function of a random variable    >     conditioned on 

the state of information    3     is denoted by 

(xlg) (2.1.1) 

We use      as a generalized summation operator; thus the k'" moment 
•'x 

of    x    is 

<X     ft> ■ x  [x|Sj (2.1.2) 

I 
«■^   



.till «nn ■ i     i. >>• piiiimjij.aii i inwfw^>^»^i u«! II'IIII«II»»IIII      . ,«IIIB.PII 11 mipBui m ■"'■"■i—" ■^•^"'»■■^•1 

whether    x    is continuous or discrete.    Inferential notation can be 

nested.     For example, 

[ocjg^l^] (2.1.3) 

implies that the mean of  fxjS-l i-s a random variable given only S1 

In addition to inferential notation, we use the following matrix 

symbols: 

a or a.] 

A or [ai.] 

a* or A' 

<a|3> or <a, |3> 

The underscored lower case letter denotes 
a column vector with element a. . 

The underscored capital letter denotes a 
square matrix with element a. . . 

The prime denotes transposition. 

A probabilistic operation is applied to 
each component of a vector. 

I 

The Basic Decision Problem 

The deterministic model illustrated in Fig. 2.1 relates the three 

elements of the basic decision problem. The decision variables d are 

set by the decision maker.  The state variables j! are set by nature. 

The value v is the output measure that we want to maximize.  If both 

s and d are known, we denote the decision that maximizes the value 

function _d(s) : 

-1 
d(s) = max v(s,d) (2.1.4) 

However, in the basic decision problem illustrated in Fig. 2.1b, 

d must set before s  is observed.  The possible outcomes are described 

by the probability density function \»\t]   , where C is the state of 

information that represents the dec isLon maker's prior knowledge and 

experience. 
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(a)    The  deterministic model 

1      v(s,d) 

(b) The probability tree 

Figure 2.1  Description of the Basic Decision Problem 
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We assume that s  is independent of d in the sense that 

[s|d,e]   = {s\e] . (2.1.5) 

This assumption is not restrictive.    When the state variables are de- 

pendent on  the decision variables   the problem can normally be  reformu- 

lated  so  that the dependence appears  in  the value   function.     The example 

in  the  following section  illustrates how state variables  can be made 

probabilistically  independent of decision Vc^iables. 

The basic  decision problem under uncertainty is  to maximize  the 

expectation of    v  : 

max   1    v(s,d)   {s|e} 
-      • 

The expansion rule from elementary probability theory is 

■<x|e> - J   <x|y,e> [y|e} . 

(2.1.6) 

(2.1.7) 

Using  this  rule,  we can  show that   the  inferential  symbol  for  the expec- 

tation in  (2.1.6)   is    <v|d,6> : 

.--v|d,e> = |   «*|i,dtc> fs|e} (2.1.8) 

The expectations  in  (2.1.6)  and  (2.1.8)  ari  the  same  since  the  expected 

value of    v    given    _s    and    d    is  determini »tically    v(s,ji)   . 

We  define    d(£)     as  the decision vector  that maximizes  the  expected 

value of    v  : 

-1 d(e)   » max       <v|d,e> (2.1.9) 

If S represents some possible future state of information, we define 

d*(S) as the intent to use d(§) when S becomes available. 

11 
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The Value of Information 

Suppose  that an analysis or experiment will provide  some  data    D 

Then    (D^C)     represents an improved state of information.     We define 

the expected value of the oata    <V_jC> : 

-^DI^" <^|d*(D.e),e>- <v[d*(e),e> 

Since C is our prior information,  d(e)  is known and thus 

(2.1.10) 

^ld*(e)>e> = vid(e)se>  . (2.1.11) 

The   first  term in  (2.1.10)   is   the  key  to the value of data.     Given  the 

data    D    we would   find 

£(D,e)  « max    '^ld,D,e> , 
d 

(2.1.12) 

which would result  in  the posterior expected value     -^ |d(U,R) jD.fi^ 

Ho'ever,  before    D    is  revealed we must compute  the prior expectation of 

this  quantity: 

<v|d*(D,C),D,C> = <<v[dCD,e),D,C>|C (2.1.13) 

2.2    The Entrepreneur's Problem,  an Example 

The expected value of data  is a very useful concept  in applied de- 

cision analysis.     The example of this  section demonstrates   its  impor- 

tance.     In  the remainder of  the  chapter we examine  conditions  under 

which  the example can be generalized  to more complex problems. 

The example.  The Entrepreneur's Problem, was originally  formulated 

by Howard   [3].     Our methodology differs   from Howard's,   but our numerical 

12 
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results are the same.  The reader need not be familiar with [3] to under- 

stand the exauple. 

Description of the Model 

The Entrepreneur's Problem is illustrated by the schematic tree of 

Fig. 2.2a.  The entrepreneur must dacide at what price p  to sell his 

new product.  His profit  TT is the revenue, price p times quantity 

sold q , minus the cost c .  Deterministically, the quantity sold is 

related to price through the demand curve q(p) .  The total cost is 

related to the quantity sold and consequently the price through the cost 

function c(q(p)) . 

The problem is simplified by assuming that given the prior state of 

information C , c and q are probabilistically independent of p and 

of each other.  The quantity Aq  is defined as the difference between 

the actual demand and th»' nominal demand q(p) .  Likewise,  Ac is the 

difference between actual and nominal cost. The independence assumption 

implies that 
{Aq,Ac|p,e} •= f^|e}[Ac!e} 

Both Ac and Aq are assumed to have zero mean: 

(2.2.1) 

<Aq|e> ■ 0 

</y; |c> ■ 0 

(2.2.2) 

(2.2.3) 

Using these simplifications we can modify the deterministic model 

as shown in Fig. 2.2.b.  The demand and cost functions are incorporated 

into the model, leaving  Aq , Ac and p as the input variables. The 

modified model is an example of the basic decision problem from Sec- 

tion 2.1.  The presentation can be simplified without loss of general- 

ity by using the reduced random variables 

13 
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"(q.c.p) 

■ p'q -  c 

(a)    The probabiHstic model 

Aq,   £c TT(iq,Ac,p)  - p-[q(p) + Aq] 

-   c(q(p)  +  Aq)  -   Ac 

I 
TT 

(b)    The simplified deterministic model 

Figure 2.2      The Entrepreneur's Problem 
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qr ■ öq/ <q|e> 

C      *   be/   <C |e> 

(2.2.4) 

(2.2.5) 

Deterministic Data 

The first step in analyzing the Entrepreneur's Problem is to per- 

form deterministic sensitivities.  The inputs to the deterministic model 

of Fig. 2.2b are varied, and the resulting change in profit is observed. 

The sensitivity plots. Figs. 2.3 through 2.6 serve as a numerical de- 

scription of the problem. 

The first sensitivity is to price.  In Fig. 2.3 we see that the 

deterministic optimum price p  is 24.1 . As price is raised or low- 

ered by 10, the profit drops from 198 to 14.  The three points are suf- 

ficient to determine a quadratic approximation to the price sensitivity 

Xp) : 

where 

TT(P) = TT(qr,cr,p) 

q  » c  »0 Tr   r 

(2.2.7) 

(2.2.8) 

More compactly we express this sensitivity as 

^(p) » Ti<0,0,p) . (2.2.9) 

The sensitivities to quantity are shown in Fig. 2.4.  Once again 

we use three points to find a quadratic approximation.  The open lo^p 

sensitivity is performed by holding c  and p constant while q 

varies: 

W = ^r'O.^) (2.2.10) 
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price    p 

Figure 2.3      Deterministic Sensitivity to price 
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quantity q 

Figure 2.4  Open and closed loop sensitivities for quantity 
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To understand the generation of the closed loop sensitivity we consider 

the point where the quantity is 3 standard deviations above the mean. 

The open loop profit at this point is 748, an increase of 555 over the 

profit at q = 0 .  We denote the open loop increase  An 1 b 

Turning to Fig. 2.5, we see that  ATTO corresponds to the increase 

in px-ofit with the decision fixed at p 

ATTO = TX3,0,po) - n<0,0,po) (2.2.11) 

We see that 748 is just ont point on the top curve in Fig. 2.3, 

-0,0^) , the price sensitivity for qr = 3 . The maximum of this 

curve is 

834 = max Tt3,0,p) (2.2.12) 

Returning to Fig. 2.4, we see that 834 is also the value of the 

closed loop sensitivity to quantity evaluated at q = 3 .  Therefore, 

the closed loop sensitivity to quantity is the change in profit given 

the opportunity to reoptimize profit after the quantity is revealed.  We 

see from either Fig. 2.4 or Fig. 2.5 that the closed loop change  An 
c 

can be decomposed into the open loop change ATTO plus the compensation 

""-o *  The latter term is due to the change in decision tö 

The unique characteristic of the cost sensitivities of Fig. 2.6 Is 

that the open and closed loop curves coincide.  This indicates that the 

decision is insensitive to colt.  In effect the entrepreneur has written 

a blank check to his creditors.  He is uncertain about the differential 

cost  Ac , but he cannot influence its resolution. 
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pro 

TT(3,0,P) 

price 
P 

Figure 2.5  The generation of the closed loop sensitivity to 
quantity 
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Figure 2.6  Open and closed loop sensitivities for cost 

cost c 
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Value of Information for the Entrepreneur's Problem 

We now use the problem formulation and the sensitivity data to solve 

the Entrepreneur's Problem and to calculate the value cf clairvoyance on 

the state variables. As we shall see in the following section there 

calculations are exact for a quadratic problem.  The value of clair- 

voyance is interesting because it is prototypal of the approximate 

value of data for more complex problems. 

Finding the prior optimum decision p(G)  is straightforward.  The 

entrepreneur's profit function is quadratic in the state and decision 

variables. As we shai.1 see in the next section this implies that the 

deterministic and probabilistic optimum decision coincide: 

PV^) ■ P, (2.2.13) 

To find the value of clairvoyance on the state variables, we 

specialize (2.1.10) to 

<vc|e>- .'TT|p*(c,e),e>- <TT|ß(C),c> (2.2.14) 

Since clairvoyance  (C.C)  is equivalent to exact knowledge of q. and 

c  we can expand (2.2.14) to 

<Vc|e>- «TT|p(qr,cr),qr.cr,?>- <TT|«e),qr,Cr,Ä>^> .   (2.2.15) 

The inner expression of (2,2.15) can be evaluated from sensitivity data. 

Since changes in cost do not affect price, the first term reduces to 

^TT^(qr))qr,Cr,
c!> = ^qr,cr)p(qr)) = n(qr ,0 ,p(qr)) -  c .  (2.2.1b) 

The  decomposition of the profit  is possible because  the  cost  is  addllivu 

Likewise,   the  second   L> rm is 

21 

 -      • — -■   " ■ 



1im***mmKm i^^mmmmmmmmmmm ■ vmmmw^mmmimmnmtmmmmmmmm'^m 

<njp(e),qr,cr,e> = ^VVPQ) 
= ^^r'0'^^ '   ^ (2.2.17) 

Subtracting (2.2.17) from (2.2.,6) we find that the inner term is the 

compensation Arr (q) , the difference between n (q ) and n (q ) 
co r c r       or 

in Fig. 2.4. Therefore, the value of clairvoyance is the expected 

value of compensation: 

|e>s    <TT(qr,o,p(q )) - TT(q ,o,p>|e> ■ <äTT  ro|c>  (2.2.18) c 

Figure 2.7 illustrates the expected value of compensation: 

<nco(qr)|s>= |     fqrle] ATTco(qr) (2.2.19) 
"qr 

Using the data from Fig. 2.4 the compensation is 

Anco(qr) = 9-5 qr  • (2.2.20) 

Substituting (2.2.20) into (2.2.19) and recalling that the reduced 

variable has zero mean and unit variance, the value of clairvoyance is 

<Vc|e>= 9.5 [   [qje] q/ = 9.5 (2.2.21) 

The value of clairvoyance is the curvature of the closed loop sensitiv- 

ity to the reduced state variable at q « 0 .  In the next section we show 

that the curvature of the closed loop sensitivity is important regardless 

of the source of the data. 

2.3 The Value of Data for a Decision Problem with a Quadratic Value 

Function 

In this section we derive the exact value of data for a quadratic 

value function. After we state the result and prove it, we suggest how 
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compensation 

ATTco^r> 

quantity q 

-3 

probability 

(Si«) 

quantity q 

Figure 2.7  The two components of the value of clairvoyance 
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to apply it to non-quadratic problems. The theorem of this section is 

extended in Chapter 3 and applied in Chapter 5. 

The deterministic model is illustrated in Fig. 2.8.  The value 

function v(s,d)  is quadratic in the state vector j and the deci- 

sion vector d  . We will normalize the state variables to have zero 

mean, and the decision variables to be zero at the deterministic maximum: 

<S\F~> - _g 

-i 
S    =  max v(<slp>,d) * 0 
-OH    —I   '  - 

(2.3.1) 

(2.3.2) 

omplexity without sacrificing These assumptions reduce algebraic complexi 

generality. 

We write the quadratic value function as 

v(s,d) = a + b^s + c'd + -^ s'E _s + s'G i + 2 d'H d , (2.3.3) 

The second-order necessary and sufficient conditions for v(s,d)  to 

have a maximum at <s|P>  and d  are that the gradient of v with 

respect to d  w(<s|e>,d ) be zero and that the Hessian of v with 

respect to d^ v<s|e>,d) be negative definite.  Using (2.3.1) and 

(2.3.2) the gradient and Hessian at <sle> and d  are defined as 
mm  I —("I 

w(<.le>.d) = agigj (2.3.4) 

V2v(^|.>)do)  -  j:i<0i0)j (2.3.5) 
^d. .^d , 

t    J 

Applying  (2.3.4)  and  (2.3.5)   to  the  definition of    v(s,d)     (2.3.3),  we 

have: 
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v(s,d) » a + b' j + c'  d 

+ 2 -' - - + -' - - + "5 -' - - 

HoWtjion 

i Transpose of a matrix 

a Constant 

b.c Constant vectors 

1 State variable vector 

d Decision variable vector 

E.G.H Constant square matrices 

Figure 2.3  The quadratic value model 
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V v^.O) = c* + O'H 

V v(0,0) = H 

(2.3.6) 

(2.3.7) 

Since the gradient in (2.3.6) must be the zero vector, our assumptions 

imply that c must also be the zero vector.  From (2.3.7) we see that 

the Hessian does not vary with j; and d    for the quadratic.  There- 

fore if the deterministic optimum d      exists, H is negative definite 

and the value function has a global maximum with respect to d    for any 

state vector js . 

Chronologically, we receive the data about the state variables. 

Then we set the decision vector, and finally nature sets the state vari- 

ables.  The state variables are independent of the decision variables 

but not necessarily independent of each other.  We assume that the deci- 

sion maker is risk-indifferent so that maximizing the vrlue function is 

equivalent to maximizing the decision maker's von Neumann-Morgenstern 

utility function. 

With these preliminaries we can state the theorem: 

THEOREM:  For the quadratic value function 

v(s,d) = a + b's + -^ s'E s + s'G d + -^ d'H d , (2.3.8) 

where  the Hessian    H    is negative  definite,   the  value of any data    D    is 

<VD|e>- - "j^lD.C^  G H'V   <|lD,ft>|C>   . (2.3.9) 

PROOF:     From  (2.1.10)   the value of  the data is 

<v !s> = 'v|d*(D,e),D,e> - --v|d*(e),e: 
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The proof is In two parts corresponding to the two terms of (2.3.10). 

First we determine the prior maximum expected value <v|d*(P),?> ; 

then we determine the expected value given the opportunity to maximize 

after the data is received <v[d*(D,e),D,e> . 

To find <v|d*(C),C> we start with the prior expected value 

<v|d,6> . Recalling that the expected values of the state variables 

are all zero, the prior expectation of (2.3.8) is 

<v|d,e> = a + -^ ^'1 »\t> + \  d'H d (2.3.11) 

The first-order necessary condition for <v[d(6),C> to be an uncon- 

strained maximum is that the gradient be zero at d(f) : 

7 <v|i(e),e>« 0' (2.3.12) 

Taking the gradient of (2.3.11) and setting it to zero, we have 

d'^H = 01 . (2.3.13) 

Since H is negative definite, d(e) must be the zero vector. There- 

fore (2.3.11) becomes 

<v|d(e),e> - a + -5 ^'E s\e> (2.3.14) 

Returning  to  the  first  term in  (2.3.10),   the expected value  given 

data    D    is 

<vld,D,e> = a + b1^. |D,e> +-| ^'E s|D,e>+ ^JD.fVG d 

+ "I d'H d (2.3.15) 

Maximizing (2.3.15) with respect to d we have 
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V <vld(D,e),D,e> ■  ««iD.e^G + d'H - 0' (2.3.16) 

Equation  (2.3.16)   implies   that 

I«. d(D,e)  ■ -  H    G'   -^ID,^ 

Substituting  (2.3.17)   into  (2.3.15),  we have 

(2.3.17) 

<v|d(D)f),D,e> = a + b,«3JD,e>+ -^ ^s'E s|D,e> 

= a + b'sJD,?, > + -  ^'E  s|D,P> 

■| ^iD.eVG H^G'   <3|D,e> (2.3.18) 

Recalling  (2.1.13),   the next  step  is   to  take  the prior expectation 

of  (2.3.18).     VJe  shall consider each  term separately.     Of course,  expec- 

tation does not affect  the value of  the constant    a   .     The prior expecta- 

tion of  the posterior mean  is   the prior mean  : 

<<B|D,R>!e>   - <t\t> (2.3.19) 

Equation (2.3.19) is a direct application of the definition of conditional 

probability.  Likewise, the third term becomes 

<<a,E>8|D,e>|e> = S'E sip~> . (2.3.20) 

Applying  the^e   results   to   (2.3.18),  we  have 

<V^*(D,e),C> - a +-2 «'E B|r>- |<-«|D,e>'C H"1Gl.'8|D,fpS|»>  . 

(2.3.21) 

Finally, subtracting (2.3.14) from (2.3.21) the result is 

28 

Ü     _...-,-.—«■»-«- --■'•-''——i   iliitlii   IMiMirt^Ml 



^DI^" - 2<^lD'e>,^ü"1G, ^!D.e>|e> .  Q.E.D.   (2.3.22) 

Special Cases of the Theorem That Appear in the Literature 

Three special cases of the theorem (2.3.9) appear in the litera- 

ture.  Howard [3, p. 518] treats the case where H is diagonal and the 

data D is clairvoyance.  DeGroot [1, p. 234] solves for d , the esti- 

mate of the random variable s which minimizes a quadratic loss function. 

In our notation his problem is the case where 

ü ; (2.3.23) 

a, b, and G are zero; and D is clairvoyance. Raiffa and Schlaifer 

[7, p. 188] present the one-dimensional estimation problem without re- 

quiring the data to be clairvoyance. 

2.4 Discussion of the Value of Data for the Quadratic Problem 

An alternate expression for the theorem (2.3.9) is: 

^nl^"- 1 trace £ C co-D (2.4.1) 

where 

E  « G H^G' 
-co — 

cD - [<<»l|D.c> ^.|D.P>le> 

(2.4.2) 

(2.4.3) 

The trace of a matrix is the sum of its diagonal elements.  The value of 

data has two major components.  The basic decision problem is specified 

by E   , and the experiment is described by Cn . 

We consider Eco and CD briefly for the general case.  Then for 
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the case that is most common we discuss how E   and CL could be een- 
—co      —D 6*-" 

erated.  Finally, we return to the Entrepreneur's Problem to illustrate 

the encoding of C- . 

Eco follows directly from (2.4.2) for a true quadratic value func- 

tion since the matrices G and H are specified.  For a problem that 

is approximately quadratic, G and H can be found by expanding 

v(s,d) in a Taylor series about the point (<B|F>, d(f)) = (0,0) : 

v     .      2 
v(s.d) - v(g.o) +^-«4i .«i--^ 

«, L"«^ J- 

i J        ^ i j-1 
(2.4.4) 

The partial derivatives are all evaluated at the point (0,0) . Compar- 

ing (2.4.4) with (2.3.8), we see that G and H must be matrices of 

partial derivatives: 

2 

H = 

i  J 

2  . 
-1 v 1 

'd. -"d . J 

(2.4.5) 

(2.4.6) 
i  J 

The partial derivatives at the operating point (0,0) can be approximated 

from open loop sensitivities.  One joint sensitivity is required for 

each possible pair of state and decision variables and for each possible 

pair of decision variables. 

The elements of the matrix C.. are the expected product of the 

posterior means.  Since the prior expectation of the posterior mean is 

zero, the elements are the covariances of the posterior means. 

When the data is clairvoyance on the state variabler, j , (2.4.1) 
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reduces  to 

<vc|c> - -r trace E    C 
I —co- (2.4.7) 

If we consider  the posterior means     <s|D,C>    as  random variables,  com- 

parison of  (2.4.7)  and  (2.4.1)   implies  that  the value of data  is  the 

value of clairvoyance on  the posterior means.     In most practical prob- 

lems   the value of clairvoyance on  the posterior mean is much easier  to 

compute  than  the value of clairvoyance on  the  data itself. 

An Interesting Special Case 

The most  interesting special  case occurs when either    E        or    C_ 
-co    —D 

is a diagonal matrix.  Then the value of data becomes 

where the vector j*'  is the i'*1 row of G : 

£-11] 

(2,4.8) 

(2.4.9) 

If  the  state  variables are  independent  (2.4.8)   is exactly equal  to 

(2.4.1).     Sufficient conditions  for  (2.4.8)   to be a good approximation 

to  (2.4.1)  are  that  the diagonal elements  dominate  the off-diagonal ele- 

ments  of    E       ;   that  is  for each    i    and     i   : -co J 

2     (iiif^xg; H"1^) 
'U OsliT1^)2 

J_ (2.4.10) 

where     p..     is   the correlation coefficient 

»lj ■ <<SJD^> <3j|D^>|e.>/v/<:-si|D,5>|e><:^sj^.|e>.     (2.4.11) 
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Given G , H , and CD , these expressions tell us when the diagonal 

assumption holds. A more interesting question is whether we can avoid 

generating the entire matrices G , H and C- .  The answer is yes, 

as shown below. 

Description of the Primary Problem Using Closed Loop Sensitivities 

We now show that the term ^l H- J^ is the curvature of compensa- 

tion of v with respect to the ith state variable : 

1    ä v (s.) 

£i - £i     .2 
as. 

i 

(2.4.12) 

where 

^P =Vc(si> " W (2.4.13) 

As we saw in Fig. 2.4, the open loop sensitivity is evaluated by 

varying si    while the other state variables and the decision variables 

remain constant.  We denote the open loop sensitivity as 

v (s ) « v(0,0,...,s.,...,0,d ) 
O  1 L        —o (2.4.14) 

In closed loop sensitivity the state variables other than s  remain 
i 

fixed, but the decision is reoptimized for each s. : 

vc(s.) ■ v(0,0,...,sl,...,0,d<0,0,...t«lf...f0))      (2.4.15) 

To show that expression (2.4.12) is valid we evaluate v (s.) and 
o      1' 

vc(si)     for  the  quadratic  value  function  (2.3.8)   : 

1 2 v(s.)«a + b.s.+-e..s. ov   i/ L  i      2    ii  i (2.4.16) 
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v^)  . maxCa ♦ b1si + \ e^s^ + s^d + | d H d) 

(2.4.17) 

Subtracting  (2.4 16)   from (2.4.17)   the compensation  is 

co    i i^Tii-i3 
(2.4.18^. 

Therefore,  by evaluating the curvatures of the  compensation curve?   lor 

the state variables,   the need to find the matrices of partial  derivatives 

G    and    H    is eliminated. 

The Description of  the Data Generating Process Through Preposterior 

Moments 

The  second component of  (2.4.8)   is     ' <<3.|D,e>|e>   the prior 

variance of  the posterior mean.     To evaluate  this   term we use  the 

theorem : 

V''s|e>='<C<s|D,e>(e>   +<^B|D>e>!e> (2.4.19) 

A proof of this   theorem is given  in Raiffa and Schlaifer  [7,  p.   106]. 

The  theorem states   that  the prior variance    Xs|e>    has  two sources.     The 

expected posterior variance     <V5|D,e>|?,>     is a residual variance which 

will not be  resolved by  the experiment  that generates  the data    D  . 

The prior variance of  the posterior mean     <C<s|D,e>je>     is  the portion 

of  the prior variance  that will be  resolved by the experiment. 

Sample Data 

Expression  (2.4.19)  is best known  for  the case where data are    N 

random samples   from     fs|e]  .     First we consider  the  limiting cases of no 

samples and of  infinite  samples.     Then we  consider a  finite number of 

samples. 
33 
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When the data Is the null experiment. N - 0 , the prior and poste- 

rior states of information coincide. Therefore, we have 

<^|D,e>|e> = <*s|e>|e> = 5b|c> 

<:<s|D,f,>|p> = ^<»|f>|e> . o . 

(2.4.20) 

(2.4.21) 

When  the number of samples approaches  infinity,   the data  is  clair- 

voyance about    s   .     The posterior probability density  function will  have 

all of its mass  at a single point.     Consequently,   the preposterioi )r mo- 

ments are 

<^s|D,e>|e> = *)|c> - o (2.4.22) 

'2.^.23) 

To discuss (2.4.19) for finite N it is convenient to define the 

ratio r 

r = V<<£!D.^|f,>/ys|S> • (2.4.24) 

The limiting cases are r = 0 for the null experiment and r = 1  for 

clairvoyance. 

A Bayesian must assign both r and  {s|f] before he can calculate 

the expected value of sample information.  For example, Raiffa and 

Schlaifer [7, p. 110] suggest assigning an equivalent sample size N' 

to the term  <C-s|D,R>!P> .  Then for certain conditions the parameter 

r is 

r = 
N 

N' + N  • (2.4.25) 
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Assigning either r or N' weights the prior information relative to 

the sample information. 

Experiments That Do Not Involve bampling 

Encoding and modeling are analogous to sampling because they par- 

tially resolve uncertainty about the state variable s .  Encoding the 

parameter r or equivalently ^,<s\V,C>\£'>   should be no more difficult 

for these cases than for sampling. 

Encoding for the Entrepreneur's Problem 

Consider the demand in the Entrepreneur's Problem.  One possible 

experiment to reduce uncertainty is to improve the deterministic model. 

A second possibility is to encode  fq]-} more completely. 

In the first case suppose the entrepreneur wants to know whether 

it is worthwhile to divide the market into sectors and to study histori- 

cal data about consumer response to price changes.  To evaluate the model 

improvement we encode what the new prediction might be at the price 

p = 24.1 .  We ask questions like would you rather  bet that a fair coin 

comes up heads on the next toss or bet that the new prediction will be 

within 10 percent of the original one. A series of such questions reveals 

that the entrepreneur's probability density function on the mean shift is 

normal with the mc^an equal to the previous estimate of 58.5 and the vari- 

ance equal to 10.  Since  Aq was previously defined as the difference 

between the predicted and actual demand we assign 

<*q|D,ft>jC) ■**!?>- 100 (2.4.26) 

^:<qlD,^|e> *  10 . (2.4.27) 

Consequently, using (2.4.18), the variance of demand is 
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me>' no . (2.4.28) 

From Section 2.2 we recall that the curvature of the compensation is 

a-n (q) 
Eco-—i—- 0.095 

dq 
(2.4.29) 

The expected value of the modeling data D is found by substituting 

(2.3.27) and (2.4.29) into (2.4.1) : 

<vD|e> = (0.095)(10) - 0.95 (2.4.30) 

Now suppose that the entrepreneur has upgraded his model, but he 

has left one free parameter, q the demand at p * 24.1 .  He feels 

that if he knew q he would have complete confidence in his model. 

His prior on q has moments 

<q|ß> ■ 58.5 (2.4.31) 

^q|e> ■ 100 . (2.4.32) 

Upon questioning, the entrepreneur reveals that a contributing factor 

to his uncertainty is personal ignorance.  If he had the opportunity 

to incorporate his staff's expertise he is confident that  [q|C} 

would change.  After further questioning he decides that there is 

a 50 percent chance that he could change q by more than 5 units after 

learning his staff's opinion.  When we point out that this implies an 

expected posteiior variance of 50, the entrepreneur says, "That sounds 

reasonable." Therefore, to compute the value of encoding q we assign 

Kqle> = 100 (2.4.33) 

<^q|D,e>|e>    ' 50 (2.4.34) 
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<<q|D,e>|e>- 50 . (2.4.35) 

Consequently,  using  (2.4.29)  and (2.4.35)  in  (2.4.1),   the value of encod- 

ing is 

<vlD,e> - (0.095)(50)  - 4.8 (2.4.36) 

2.3    The Value of Data for Non-Quadratic Decision Problems 

The F"rpose of this  section is to discuss how the  theorem of Section 

2.3 can be extended  to non-quadratic problems.     The result  is a practical 

procedure for ranking the state variables.    Given certain non-restrictive 

conditions the ranking scheme applies  to any single-stage decision problem, 

regardless of whether the decision and state variables are continuous or 

discrete. 

The Discrete Decision 

Before we  turn  to  the general evaluation scheme, we consider the 

discrete problem.     With presubscripts denoting the decision alternative 

the value function is 

h lij'l + "2 I*   il 1 + • • • d - dj 
V(8,d)   -     < (2.3.1) 

2* + 2*' -b'   2* 1 + d-d. 

There are only two possible decisions, d.  and d_ . 

We would like to find an expression for the value of data similar 

to the one derived for the quadratic problem in Section 2.3. The expres- 

sion should depend on deterministic sensitivity data and the prior dis- 

tribution of the posterior mean. 

The key factor in the quadratic problem is that optimizing the value 

function evaluated at the mean of the state variables is equivalent to 

37 

.MMMM  i -■- i 



optimizing the expected value  : 

max      v(<s|D,e>,  d)  = max'  <vld,D,e> (2.5.2) 

Without  this property we cannot have  the  simplification  that  the closed 

loop stochastic  sensitivities can be  replaced by deterministic  sensitiv- 

ities: 

Vco(si)  " ^iiKs.^.s^O-  <v|3(e),e> (2.3.3) 

It  is  straightforward  to show that  (2.5.2)  and consequently  (2.5.3) 

hold  for  the discrete problem only if the value   function  is  linear  : 

v(s,d) 

ja + jb _s if    d = d. 

(2.5.4) 

2a+2^ if    d = d. 

For  this case consider data    D.     that  inpacts  only    s.   : 

'Sj|Di,e> » <i.|e> j  jt  i (2.5.5) 

We can show that the expected value of data D.  is the expected compen- 

sation for s. : 
i 

^Dt lC> " ^co^ lC> (2.5.6) 

Figure 2.9 shows the open and closed loop deterministic sensitivi- 

ties for the linear quadratic problem.  The terms a and b    which coir- 

pletely specify the closed loop sensitivity for the discrete case did not 

even appear in the continuous sensitivities discussed in Sections 2.2 

and 2.4. 

We notice that the difference between the value of data for the 
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value 

d-d. 

d = d. 

value 

Vc<8i> 

Figure 2.9  The open and closed loop sensitivities for a linear 
two-action problem 
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discrete and continuous cases is contained in the differences between 

the sensitivity plots. Expression (2.5.6) holds for both cases.  This 

similarity suggests the following practical procedure for ranki' j state 

variables in a decision problem: 

Step  1:  Plot the deterministic open and closed loop senFitivities 
for each state variable. 

SteP 2:  Calculate the expected value of compensation for each 
variable. 

Discussion of the Ranking Scheme 

Certain conditions must hold for the ranking to be accurate.  First, 

the condition (2.5.3) that the stochastic compensation is approximately 

the deterministic compensation must hold.  Second, the state variables 

must be effectively independent in the sense of (2.4.10) and (2.5.5). 

Third, if the data is not clairvoyance, the r coefficient defined in 

(2.4.24) must be the same for each variable, making the value of data 

proportional to the value of clairvoyance.  For most practical p-oblems 

this is not a restrictive set of assumptions. 

An approximate method for performing Step 1 for the quadratic 

problem is suggested in the Entrepreneur's example of Section 2.2.  For 

the discrete problem with many possible decisions the closed loop sensi- 

tivity can be found by plotting all of the open loop sensitivities and 

taking the maximum as a function of s. .  This technique is illustrated 

for the two option case in Fig. 2.9.  Problems with both discrete and con- 

tinuous decision variables will have more complex compensation plots 

than either the continuous or discrete cases. 

If the compensation plot is approximately quadratic Step 2 is per- 

formed by finding the curvature of the compensation plot and multiplying 
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by the variance of Sj^ .  If the compensation plot has the form of 

Fig. 2.9, the expected compensation is : 

where 

and 

<VDil
e> 

JlzV iM L(r) Ci) 

I2V iM L(i) c-t) 

la- 2a 

L
(r) r. % . 

(2.5.7) 

(2.3.8) 

I  d^jD.,^^ (^.ID.,?^- sb) [<s.|D.,P>|e] (2.5.9) 

(ft ■ 

L   (s.) -      d <si |D.^,> (sb - ^.ID.^^) f:si|D.,e,>|e] (2.5.10) 

The  linear  loss  integrals   (2.5.9)  and  (2.5.10)  are  tabulated  functions 

for  the normal distribution.     It  is  straightforward  to  compute  the  lin- 

ear  loss  integrals  for  the  uniform and  the  triangular distributions. 

When either  the sensitivity plot or  the probability density  function 

has  a complex functional  form,  numerical integration  is  required  to per- 

form Step  2. 

2.6     Deliberate  Introduction of Error 

We deliberately  introduce errors  into a decision analysis  if  the 

resulting computational savings exceed  the expected  loss.     In  this  sec- 

tion we  show  that  the expression  fjr  loss  from using  the  approximate 

probability density  function     {s\zf    instead of the  accurate one     fs|P} 

for  the quadratic problem is     jja  : 
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where 

- •*  trace E  S 
2     -co — 

S = «a'ic^  <s|e>a 

(2.6.1) 

(2.6.2) 

This is the sair.s as the value of data (2.4.1) with the covariance matrix 

Co replaced by S , the matrix of products of the approximate means. 

S is the zero matrix for the accurate probability density function 

[s|e] because the state variables are normalized to have zero mean: 

<s!«> = 0 (2.6.3, 

To derive  (2.^.1)  we must distinguish between  two  types  of error. 

The   total change  in expected value     Av      is  the difference between  the 

maximum expected values  based on  the correct and approximate probability 

density  functions  : 

a „ a - <v|d(e),c> - <v|i(er,e> (2.6.^) 

By adding and subtracting <v|d(f,)a,e> we can divide the total change 

into two parts : 

Av = ^|d(e).g>- .^|d(e)a>r-;+ <v[d(C)*.e>- <v|d(e)*.e^ (2.6.5) 

Av 
a 
co Av 

v- 
a 

The decomposition is illustrated in Fig. 2.10 for a single decision vari- 

able. 

The loss (2.6.1) is defined as the compensation 

/= A.8 

co (2.6.6) 
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<vld(e),e> 

a „ a <v|d(C)",e> 

d(e)«o 

The change in 
computed mean 

a 
'   Av 

Hty 

<v|d,e>a 

Figure  2.10      The effect of using an inaccurate probability density 
function on the state variables 
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The loss  Is the difference between the expected value given the best 

decision    d(e)    and the expected value given the inferior decision 

i(e)a . 

To understand why  Avo should not be included in the loss, suppose 

that the only effect of the approximation is to add the fixed amount a 
o 

to every outcome : 

<vld.e>a - <vld,e>+ a (2.6.7) 

Taking the gradient of both sides of (2.6.7), we find 

d(e)   - d(e) . (2.6.8) 

Adding a^    to every outcome changes the calculated expected value with- 

out changing the decision.  Using (2.6.7) and (2.6.8) in (2.6.5), the 

two terms are 

Av 
CO 

*:- - a 

(2.6.9) 

(2.6.10) 

Just as information only has value if it can change the decision, er- 

rors only cause losses if they affect the decision.  Consequently, the 

3. 3. 
expected economic loss is  Av   , not  Av 

CO 

Quadratic Terms 

We now derive expressions   for     Av*      and     Ava    for  the quadratic 

case.     The expected value of    v    given    d    and     [s|e}a     is 

•-vld,S>a - a + b'<s|e>a + i -VE s|e>a + -^ ^ G d + i d'H d  . 

(2.6.11) 

Maximizing (2.6.11), we have 
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d(e)a = - H"
1

^« <sle>a 

Substituting  (2.6.12)   into  (2.6.11)  yields 

<ir|d<C)a,C>' = a + b'-^le^ +-| -cs'E _s|e>a 

(2.6.12) 

- I <^|C>* G H'^'  -^l^3 (2.6.13) 

Substituting (2.6.12)   into    <v[d,e>    from (2.3.11), we have 

<v[d(e)a,e> = a+ -| ^'F _s|e>--| ^'le/G H'V <3|e>a .   (2,0.1 H; 

From (2.6.14) the prior solution is 

1 <v |d(e) ,e> » a + -^ -^S'E _s le> (2.6.15) 

Subtracting (2.6.14) from (2.6.15) and (2.6.13) from (2.6.14) yields 

the desired terms : 

Ava - -J ^ le>a G H^G' <s le>a 
c       2    —   ' — —    —      — i 

/\va - - b* <s|e>a + i ^S'E ile> - -I -^'E sle>a 

(2.6.1b) 

(2.6.17) 

To evaluate a computational procedure we must be careful to dis- 

tinguish between open loop changes and compensatory changes.  Since the 

open loop changes do not affect our decision, eliminating them only 

satisfies curiosity.  It is the compensatory changes that we are willing 

to pay to eliminate. 
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CHAPTER 3 

VALUE OF ANALYSIS  FOR A RISK SENSITIVE DECISION MAKER 

3.0 Introduction 

The object of this chapter is to extend the results of Chapter 2 

to a risk sensitive decision maker. We calculate the value of clair- 

voyance for an exponential utility function and a quadratic value func- 

tion.  The result is not a practical one because it involves third and 

fourth covariances which are difficult to encode.  However, the result 

provides a basis for determining conditions under which the expressions 

from Chapter 2 are valid.  In the final section of the chapter we com- 

pute the loss if risk preference is omitted from a decision analysis. 

3.1 Preliminaries 

The phenomenon of risk preference is well known.  Pratt [5] and 

Howard [2] give excellent treatments of the subject.  Basically, the 

decision maker assigns a utility function which gives a number u to 

every possible value v .  Decision alternatives are described by the 

probability distribution on v or lottery that they represent.  The 

fundamental theorem of decision theory is that one lottery is preferred 

to another if and only if the expected utility of the first is greater 

than the second.  Therefore,  d.  is preferred to d  if and only if 

<u(v)|d1,e> > <u(v)|d2,e> (3.1.1) 

The certain equivalent of a lottery is defined as the value ""<v|C> such 

such that the utility of  ~<v|6> is equal to the expected utility of 
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the lottery 

uC^^IO) - <u(v) |e> (3.1.2) 

Risk Aversion and Exponential Utility 

Pratt [5] has shown that all of the essential information about a 

utility function is contained in the local risk aversion coefficient 

\(v) : 

V(v)--^i/^ 
dv 

(3.1.3) 

A constant risk aversion coefficient y    implies the exponential utility 

curve 

u(v) 
1 - e V* 

1 -  e 
(3.1.4) 

The local risk aversion for other utility functions can be conveniently 

represented by a power series about the mean of the lottery <v|R> : 

Y(V) - v«vle>) + dY^]e>? (v - ^|e>) + ... (3.1.5) 

From (3.1.5) we see that any utility curve can be approximated by the 

exponential utility curve with 

v - Y(^'le>) (3.1.6) 

as lo^g as the variance of v  is not too large. 

The exponential utility function is convenient analytically because 

it has the delta property; if a fixed amount 6 is added to each of the 

prizes in a lottery, then the certain equivalent- is also increased by  5 
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~<v + 6|e> ^ ^<v|e>+ 6 

The Approximat«'. Certain Equivalent 

An approximation for the certain equivalent is 

~<v|e> = ^|e> - ^ Y(<v|e>) <v|e> 

(3.1.7) 

(3.1.8) 

Expression (3.1.8) ic exact for exponential utility and a normal lottery. 

Therefore, for lotteries which are approximately syranetric and not too 

diffuse, (3.1.8) should be an excellent approximation. 

The Risk-Sensitive Value of Clairvoyance 

The risk-sensitive value of clairvoyance is defined as the cost 

k such that the expected utilities with and without clairvoyance are 

equal : 

<uik,C,e> - <u|e> (3.1.9) 

Using the delta property and the definition of clairvoyance, it is 

straightforward to show that for exponential utility (3.1.9) reduces to 

k - ~<vc|e>« ^«f[d*<c.c),c>- ~<vl|(C).e> •        o.i.io) 

The second term in (3.1.10) is the risk-sensitive solution to the 

basic problem.  In this chapter d(e)  represents 

d(e) = max'  ~"<vld,e> . 
-      d      u 

(3.1.11) 

When we wish to refer to the 5(e)  of Chapter 2 that maximizes the ex- 

pected value of v we will use d      since we showed in Chapter 2 rhat 

—o 
maxim imizes <v|d,e> as well as v(<s|e>,d) . 

The first term in (3.1.10) may be simplified.  Clairvoyance allows 
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us to maximize d after s is revealed 

d(C,e) - d(s) (3.1.12) 

Given both £ and d , v is known deterministically; therefore, we 

have 

d(s) ■ max  '~<v|s,d,e> ■ max  v(s,d) 
d d 

(3.1.14) 

Since the resulting certain equivalent is a function only of _s , we 

may write 

~<v[d*(c>e),e>-^<v(s,d(s))|e> . (3.1.15) 

To find the certain equivalent given clairvoyance, we maximize the 

determistic value function, perform a change of variables from J;  to 

v , and find the certain equivalent of the resulting lottery. 

3.2 The Value of Clairvoyance for a Risk-Sensitive Quadratic Problem 

Although it is possible to definte the value of data for a risk- 

sensitive decision maker, the resulting expressions are so complex 

that we gain little insight.  Instead, we examine the special case 

wuere the data is clairvoyance on the vector of state variables.  By 

examining the conditions under which the risk-sensitive value of clair- 

voyance reduces to the risk-indifferent value of clairvoyance, we 

learn when we can apply the results from Chapter 2. 

The Derivation of the Approximate Value of Clairvoyance 

To find the value of clairvoyance (3.2.1), we know from (3.1.10) 

that we find the difference between the certain equivalent with clair- 

voyance and the certain equivalent without. 

Starting with the primary problem, we want to find 

49 

mmm. .     I nui^l 



iWjii|«i. MJ^WJJ ii.-liHPiij n.   i.uiii.i    i   i   tnm^mmt^^i   ■. i ■ ■min ai i n ""- '«■^ ti|iiimpip*i^m^^vf^Mi^i^iw(.^fnn^!mi^wr9nvM|pp 

~<v|d(e),e>a - <v[d(e),e> - -^ v ~<v[d(e),e> .        (3.2.2) 

We have used the small symbol a to denote an approximation. We de- 

fine d(e) as 

d(e)a ■ max"1 ~<v|d,e>^ 
d     u (3.2.3) 

Then our approximation is 

-<vl|(e).e> = ~<^,td(e)a,e>a . (3.2.4) 

To find    ~'<v|d,e>     we need the mean and variance.     From (2.3.11) 

the mean is 

<v[d,e> - a + ■•£ <3'E _s|e>   + | d'H d  . (3.2.5) 

To find the variance we square expression  (2.3.8)   for    v^.d)   : 

v (s.d) - a + b's s'b + - (s'E s)Z + d'G's l'G d + -i (d'H d)2 

+ 2a b's + a ^'E ^ + 2a s'G d + a d'H d + b'j; s'E ^ 

+ 2b'^ s'G d + b's d'H d + s'E s s'G d + -^ ^'E s d'H d 

+ ^'G d d'H d 

Abbreviating the mean vector and the covariance matrix, 

I = <s |e~> 

(3.2.6) 

c = ^ s' ie> , 

(3.2.7) 

(3.2.8) 

the expectation of  (3.2.6)   is 
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<V
2[d,e>- a + b'C b +-| ^'E-s)2|e>+ d'G'C G d + ^(d'H d)' 

+ a -OJ'E s|e>+ a d'H d + b'^ s'E s |e> + 2h'C G d 

+ <s'E 1 s' ]£> G d + -| ^'E 1 |e> d'H d  . (3.2.9) 

Squaring <v[d,e>    from (3.2.5) we have 

<v|d,e>2 = a + -i ^'E s|e>2 + ^(d'H d)2+a <£'£ s|e> 

+ a d'H d + ^ <s'E  s|e> d'H d  . 

Subtracting (3.2.10)   from (3.2.9) we calculate the variance 

(3.2.10) 

v<v[d,e>-b'c b+-| (<(£•£ s)2ie>- ^'E sie>2)+d'G'c G d 

+ b1  <s  s'E s|e>+ 2b'C G d + ^'E • s' |e> G d (3.2.11) 

Combining  (3.2.5) and (3.2.11) using (3.2.2), we have 

~<v|d,e>a  - a +-| ^s'E s|e>- "I  v  (b'C b +-|  (<(£'£ s)2|e> 

- ^I'I s|e>2^ + b1^ S'E s|e>) 

- \  Y (^'C + ^'E I s' le>) Gd+-|d'(H-   y^'CG)^   . 

(3.2.12) 

The gradient is 

V ~<vld,e>a = -Y (b'C + -| «is'E s l" |e>)  G + d'(H -   y G'C G) 

(3.2.13) 

Setting the gradient to zero, we find 

d(e)a = YCM - \ G'C G)'1^'^ b +-5 <s s'E ^|e>) .        (3.2.14) 
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Finally, substituting (3.2.14) into (3.2. 12), the solution is 

~<v|d(e)a,e>a - a + "I ^'E s|e> - ^ y  (b'C b + "I ^(s'E s)2|e> 

- ^S'E I|e>2) - b'^ s'E s|e>) 

- \  Y2^1^ + -| ^'E s s' |e>) G(H 

" VG'C G)"1 G'CC b +-| <s ^'E s|e>) .   (3.2.15) 

We now consider the other term in (3.1.10), the certain equivalent 

with clairvoyance. Expression (3.1.14) indicates that we should maxi- 

mize the value function given j; . The gradient of v(j3,jl) is 

Vv(s,d) « .s'G + d'H . (3.2.16) 

Setting the gradient to zero yields 

d(s) = - H G's (3.2.17) 

Notice that this is the exact maximum since we have not yet introduced 

the certain equivalent approximation for this case. Substituting into 

(2.3.8), we have 

v(s,d(3)) "= a + b's + "I s1^ - G H"1^') _s .     (3.2.18) 

Proceeding in analogy to (3.2.5) through (3.2.11), the mean and 

variance are 

<v(s,d(£))\e.> - a + -| ^'(E - G'H"1^') s|e> , (3.2.19) 

v<v(s,d(s))|e> = b'C b +-| (^'(E - G H"1^') s)2|e>- ^'(E 

" 9. S"1S,)l|*>V,i,<! !'(£-G H"^') _S|C> 
(3.2.20) 
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Combining (3.2.19) and (3.2.20), using (3.2.2), we have 

"<v(s,d(s)) |e> - a + -| ^'(E - G H'1G,)s|e> - -^ y (b'C b 

+ -| (<(£*(£- £ H_1G,)1)
2|e> - o'Ci-G H'VXlIC^) 

+ b^s ^'(E - G H"1^1)^^^ . (3.2.21) 

Finally, subtracting (3.2.15) from (3.2.21) we have the result : 

<*C|C>* ' ' \ ^'^ iJ'^'il^ - \ y te'G H'12,i)2|C> 

- ^'G H'^'sle^ - 2 ^'G H'^'s S'E s|e> 

n • o o «i l«.. + 2 'Cs'G H"'G\s s'E s\Z,>- + b' <s ^'G H"'G,i)C>) 

+ 2 Y fe'^ + 1 ^'-5 ^ l' le>)^Qi " VG'C G)"1^'^ b 

+ "I <^ s'E .s|e>) (3.2.22) 

Discussion of the Risk-Sensitive Value of Clairvoyance 

We now examine conditions under which the risk indifferent value 

of clairvoyance (2.4.7) is a good approximation to the risk-sensitive 

value of clairvoyance (3.2.22).  Since for y   equal to zero the two 

expressions must be equal, the first term of (3.2.22) is the risk- 

indifferent value of clairvoyance : 

^c'^ - " I ^,--"1-,-le> (3.2.23) 

Therefore, we want conditions such that the first term of (3.2.22) 

dominates the others. 

To eliminate third and fourth covariances, we assume chat the 

state variables are normal and independent.  Under these assumptions 
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the  following properties are true 

coy,       ,   ip^ <si,sj|e> 
si i-j 

l^J 

(3.2.24) 

C0V<il,t .^jO- 0 all t.J.k (3.2.25) 

cov 
<sl'sJ>sk'sile> 

3^ 

V V 
sisJ 

0 

i-j-k-1 

i-j, k-1 

i-k, j»i or 
i'Z,   j-k 

otherwise 

(3.2.26) 

We use the abbreviated symbol for variance s , when the state of in- 

formation is understood to be C . Using (3.2.25) to eliminate the 

third covariances, sufficient conditions for the first term of (3.2.22) 

to dominate the others are : 

<Vc|e> »-I Y (<(±X^)2\^>- <±X^>) 

-co- 

1 .2 K. l«.l <Vc|C> »-5 y    b'C G(H - v G'C G) G'C b 

where we have used the definition of Eco from Chapter 2 . 

E  - G H^G' 
-co — 

Applying (3.2.24) and (3.2.26), the conuitions are simplified 

(3.2.27) 

(3.2.28) 

(3.2.29) 

(3.2.30) 

r I 
» 

I    \\     2 v v 
4 LL   coij i j 

(3.2.30) 

i J 

54 

__, -  -.. ..   ..~*m 



I.Mii iiMii,W||pn^PPPi«iiiMuiiiiiii!i.j|wuuii li.wMiiiiiiiüiini ii itmrn^^mmtm^ i ! l(lIPllUT««ii> .IMIVIiil .1  IKI. KU.   .  mi   i ■njM I i.i inn iiii|||.|pui I.        l.«J ■■••ii,w(v<t|i|iai 

—»ill6 
y CO 

i J 
ij 

!ij ^i^J 
(3.2.31) 

—^J— » b'C G(H - Y G'C G) G'C b (3.2.32) 

Expressions (3.2.30) through (3.2.32) depend only on the first and sec- 

ond order partial derivatives of v and on the covariances of the 

state variables. 

One State Variable and One Decision Variable 

To better understand the three conditions (3.2.30), (3.2.31), and 

(3.2.32) we specialize them to the case of one state variable and one 

decision variable  Recognizing that the value of clairvoyance may be 

written. 

<v e> c ' 
1 V -z e       s 
2 co (3.2.33) 

the conditions reduce to 

- » <v e> 
y C i 

(3.2.34) 

1    I  v 1 
-»es 
Y   1   l 

(3.2.35) 

b s 
2 ^ 1 + 2Y <v |C> y '  c ' 

(3.2.36) 

The second two conditions, (3.2.35) and (3.2.36), are no surprise. 

Assuming (3.2.34) holds, (3.2.35) and (3.2.36) together imply 

1    . 2 v  1  2 v2   » ,. - „ 
—T»b s+^e s »   <v|d-0,e> . (3.2.37) 
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The criterion that the variance be much less than the reciprocal of 

the risk aversion coefficient is the one usually invoked to Justify 

the certain equivalent approximation (3.1.8) (see Howard [2, p. 513]). 

The new insight is that the value of clairvoyance on the state 

variable must be fmall relative to the reciprocal of the risk aversioJ 

coefficient. Evei. if the variance criterion (3.2.37) is  satisfied, a 

problem is unsuitable for approximate analysis if strong coupling 

between the state and decisio;. variables causes a violation of 

(3.2.34). 

3.3 The Approximate Value of Risk Preference 

In this section we consider both the loss from deliberate suppres- 

sion of risk preference and the gain from additional assessment. These 

are important quantities for ^he applications of Chapter 5. 

The most interesting result of this section is that the risk aver- 

sion coefficieit y   can bp treated as a random variable. The approxi- 

mate value of -isk preference encoding is the approximate value of 

information on -y , treating y   as if it were a state variable. 

Deliberate Suppression of Risk Preference 

Deliberate suppression of risk preference results in an inaccurate 

decision.  The loss from using the risk-indifferent optimum d  instead 

of the risk-sensitive optimum ^(C)  is 

i  = ~<v|d(e),e>- ^v[| ,e> (3.3.1) 

For a single decision variable, (3.3.1) is illustrated by the lower 

curve in Fig. 3.1. 

As discussed in the previous section the exact certain equivalent 
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<v|d,e> 
value    v 

<v|d,e> 

Figure  3.1      The exact and approximate  losses  from suppression of risk 
preference 
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is difficult to computo.  Therefore, we approximate (3.3.1) by 

(3.3.2) 

where the superscript a denotes the certain equivalent approximation 

(3.1.8). The first term in (3.3.2) is (3.2.15) and the second term Is 

(3.2.12)  evaluated at    d    = 0   .     Consequently,   we  have 

v3  " - 1   Y2(fe,C +\    s'E  s s" |e>) GQj -   vG'C G)'1^' 

(C   h+\    s  s'E s|f   )   . (3.3.3) 

If we were  only  interested   in   the  suppression of  risk aversion 

(3.3.3)  would  suffice.     However,   for additional  risk preforemo  assess- 

ment,   the expression analogous   to   (3.3.3)   is   difficult   to derive. 

Therefore,   we  now show  that a  second approximation of i s 

.am ■ vido.e - ^i|(ef,c> (3.3.4) 

where  the  superscript    am    denotes   the approximation based on   the mean 

The  approximation   is   illustrated   In   the   top  curve  of Fip.   3.1, 

To motivate   the  approximation  we   return   to   the  case of one   state 

variable and  one  decision variable.      \e assume  that condition   (3.2.34) 

holds;   the  reciprocal of  the   risk aversion  coefficient   is   Inr.:e  com- 

pared  to  the  value of clairvoyance  on  the  state variable.     Itelng  the 

definition of  clairvoyance,   this  condition   implies   that 

2 2 
.*i" 'o 

(tin   )   Ne- (3.3.5) 

Differentiating the expressions for the moan and variance, (3.2. >) and 
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(3.2.11), we see  that  (3.3.5)   implies 

a <v|d.e> 

ad2 

.2 V »i Y
y^lj.e>| 

2 adz     I 
(3.3.6) 

Therefore, when condition (3.2.34) holds the variance is approximately 

linear in d . 

In Fig. 3.2 we show the relationship between the mean and certain 

equivalent when the variance is linear in d .  Using (3.1.8), the cer- 

tain equivalent is the mean minus the risk premiim, one half Y times 

the variance. At do  the slope of the expected value is zero; there- 

fore, the slope of the certain equivalent at do is minus the slope of 

the risk premium.  Likewise, at d(e)a  the slope of the certain equiv- 

alent is zero, making the slope of the mean equal to the slope of the 

risk premium.  By (3.2.5) and (3.2.11) both the mean and variance are 

quadratic in d .  Since the risk premium is linear in d , both the 

mean and certain equivalent must have the same constant second partial 

derivative with respect to d . 

Th« conclusion is that the curves for the mean and certain equiva- 

lent in Fig. 3.2 are identical narabolas; if we translated the curve 

for the certain equivalent tr the r.ght by 

Ad = d - d(e) o   x ' 

and upward by 

Av •;v|<f C>- ^v|d(C)a.e>a . 

(3.3.7) 

(3.3.8) 

the two curves would coincide.  It follows that the two approximations 

(3.3.2) and (3.3.4) are the same for this case : 

.am   a 
ly     =   t  y (3-3-9) 
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value    v 

slope - - Y* ■    J~i 
slope - -5^ J-J— 

<v|d,e> 

Figure  3.2      Relationship between  the expected value and certain equiva- 
lent when nhe variance is a linear  function of the decision 
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The Value of Additional Assessment 

To evaluate the value of additional risk assessment we consider y 

as a random variable.  Assuming that  -y Is the only useful data from 

risk preference encoding, we would like to compute 

<v |e> - ^vld*(Y,e),e> - '5tvld(c),e> . (3.3.10) 

Unfortunately,   the  first term In (3.3.10)   Is difficult to calculate 

since  the expansion rule does not hold  for certain equivalents: 

^vU*(v.e).e>'1 T<vti(Y.C).y,C>|e> (3.3.11) 

Consequently,  we  define  the approximate expected gain  : 

<v [e^ - <vid(e)a,e>- <v[d*(Y.ß)a.e> 

-<vU(e)a,e>-  <<vld(Y,C)a,Y.C>|C> (3.3.12) 

The approximation Is good when the analog to (3.3.5) holds; the Hes- 

sian of the mean H should dominate the Hessian of the risk premium 

"Vl^'C G •  The optimal decisions In (3.3.12) are approximate because 

they are based on the certain equivalent approximation (3.1.8) and be- 

cause we assume that the solution prior to encoding can be fourd by 

fixating  v at Its mean : 

d(g)a - max"1(<vld,e> - | <Y|C> ^v[d,e>) (3.3.13) 

d(Y,e)a - m|x"1(<v[die> - "I  Y^U»e>) (3.3.14) 

The prior  solution  (3.3.13)   follows   from Section  3.2 by substitut- 

ing    <Y1C>    for     Y : 
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i(e)a - z <vic> (3.3.15) 

<v\i^)a,e>a - a + \<s'Es\e> + ±z'jiz <Y|e>2      (3.3. 16) 

where  for notational convenience we define 

z -  (H -   YG'C G)"1 G'^ b +^ ^i'E s|C>) 

The solution when    -y    is known is 

(3.3.17) 

d(Y,er ' z   y 

<v[d(Y,e)a,Y,e> - a +^ ^s'E i|e> + i ^«H^  y
2 

Taking the expectation of (3.3.19) we have 

(3.3.18) 

(3.3.19) 

<<v|d(Y,e)a.Y,e>|e; -a+-^ ^S'E ^JO + ^'H^ <Y
2|e>. (3.3.20) 

Substituting  (3.3.20) and (3.3.16)   into (3.3.12) we have the 

result  : 

<V
Yle>am - " ^'»-S^l^- - ^ b'C G(H.   YG'CG)-1G'Cb   v<Y|e> 

(3.3.21) 

where we have dropped  the  terms involving third covariances  from (3.3.21) 

Discussion of  the Value of Additional Risk Preference 

We can rederive  (3.3.21) using the  theorem of Chapter 2 and the 

following analogy: 

an <v\d,R>     -   ^v|d,e> 

an i« i    m y - <Y|e> 

d      ■ d 

(3.3.22) 

(3.3.23) 

(3.3.2^) 
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where the f-uperscrlpt an denotes analogy.  We treat the certain 

equivalent as the mean or objective function and v as the atate 

variable, leaving d as the decision vector.  Differentiating the ob- 

jective function and evaluating at d - 0 and  y - <v|e> , we have 

An   2 
H  -v ^[d.O- H - <Yle>G,C G (3.3.25) 

Gan - v (a^»e>) . b-c + <S.E s .' |C> .      (3.3.26) 

Notict that the covariance matrix C has been absorbed into the coef- 

ficients.  Finally the prior variance of the posterior mean of the state 

variable is 

^<i|V>Ä,l|c>.v<<Y|^>|e> - *Y|C> (3.3.27) 

Substituting  (3.3.25),   (3.3.26)  and (3.3.27)   into  (2.3.9)  and dropping 

the terms  involving  third covariances, we have 

<* le> 
Y 

an 1 ran „an"1 „an* v   ,_ 
2 G      H G        <y\t> 

- " 1 b'C   (H -   <Y|e> G'C G)"1 C b ^y\e> . (3.3.28) 

which is  the same as  (3.3.21). 

The conclusion is  that by treating    y   as  if it were a state vari- 

able we can find the value of additional encoding.     The parameters re- 

quired other  than    <Y|e>   and  V<Yle>   are  the same ones needed to compute 

the value of clairvoyance on the state variables. 
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CHAPTER 4 

THE DESIGN OF MONTE CARLO SAMPLING 

4.0 Introduction 

This chapter is logically separate from the others.  To under- 

stand the applications in Chapter 5, the reader must comprehend this 

development as well as the results in Chapters 2 and 3.  However, in 

this chapter only the results in Section 4.1 are important to the 

reader's understanding of Chapter 5. The derivation of Section 4.2 

and the discussion of Section 4.3 involve new concepts and notation 

which might be a burden to the casual reader. 

4.1 The Expected Loss from Incomplete Sampling 

In this section we discuss how sampling can be used to approxi- 

mate the optimum decision for a problem with a single decision vari- 

able. We define the resulting loss as the difference between the exact 

expected value and the approximate one. We state and discuss the re- 

sult for a quadratic value function in this section, leaving the deriva- 

tion until Section 4.2. 

The deterministic model for this section has one decision variable 

and many state variables : 

v(s,d) ■ « 4 b1! 4 -x J*! S 4 s\g d + -| h d2     (4.1.1) 

where we have modified the    G    and    H    of previous chapters  to   jj    and 

h    respectively.    This reflects  the change  in dimensionality.    The 

object of  the  sampling program is  to maximize  the expected value of    v  : 
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max <v|d,e> (4.1.2) 

For the quadratic problem we can solve  (4.1.2)  exactly using the 

results of Chapter 2.     However,   for more complex problems  the exact 

solution may te  impossible  to  find, and we might use an approximate 

solution based on sampling.     The general approach is  to discretize  the 

decision variable and then to find the approximate expected value 

<v|dj,C>     at each discrete decision setting    d     .     We can generate the 

it    sample at  the  jth decision setting by choosing a random sample 

from the probability density function of the  state vector     [s\t}    and 

calculating the associated value of   v : 

fj  " v(t£.dj) (4.1.3) 

Sampling in this manner,  we can solve  for    d(C)    without ever calculat- 

ing the probability density function    {v|d,C} 

Figure 4.1  illustrates  the  terminology we need  to state  the sampl- 

ing problem more precisely.    The    n.    decision settings are equally 

spaced over a predetermined range    2A .    The  range  is centered at the 

deterministic optimum, which is zero in accord with previous chapters: 

*0 - 0 (4.1.4) 

To simplify the notation and derivation of Section  4.2, we have assumed 

that    n^    is odd and defined the new parameter    L  ,  where 

nd - 2L + 1  . (4.1.5) 

At each decision setting d  , n  random samples are taken from 
J s 

the probability density  function     {v|d  ,e)  .     Then a quadratic  least 
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«vjd.o 

^ns samples from [v|d ,£} at each 
\,_  decision setting ■' 

dT- A ir 

h 
J L J L 

d 0      d .        0 d,        d 2        -1 1 2 
Hr 

n. • 2L + 1    discrete settings of    d 

*L- A 

Figure 4.1     Terminology for the sampling problem 
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squares Mirve is fit through all of the data points.  The maximum of 

this curve d(e)  approximates the optimum decision d(C) . 

The main result of this section is that for large n,  the expected 

loss <x|N,e> from using 3(e)a rather than d(C)  is 

where 

<i|N.e> - —^ miSLte 
4 h A2      N 

N ■ n n, . 
s d 

(4.1.6) 

(4.1.7) 

The loss is proportional to the variance at d(C)  divided by the 

total number of samples.  This is the result that we need for Chap- 

ter 5. 

Since the loss in (4.1.6) depends on the product of n  and n. , 
s       d 

we would not expect it to matter whether we discretize d finely, 

taking only a few sampler per setting, or whether we discretize d 

coarsely, taking many samples per setting. However, this conclusion 

is only valid for large nd .  In other words, very fine discretization 

is approximately equivalent to fine discretization.  In Section 4.3 

we show that fine discretiz ition always results in a smaller expected 

loss than coarse discretization. 

Finally, let us recognize that (4.1.6) is based on a simple sampl- 

ing program. More complicated procedures would use higher order curve 

fits and would combine prior data with sample data. As long as the 

range  A is not too large and the sample size N is not too small, 

those sophisticated techniques should still exhibit the insensitivity 

of our simple approach. 
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4.2    Proof that the Expected Loss Is Inversely Proportional  to  the 

Total Nunber of Sample Points 

To derive expression  (4.1.6), we need to introduce some additional 

concepts.    Least squaves curve  fitting is most conveniently analyzed 

in terms of orthogonal polynomials.    Any function    f(d)     that can be 

expanded in a Taylor series can also be expanded in terms of orthogonal 

polynomials : 

m 
f(d)   "    I   bk   \id) (4-2-1> 

k-0 

The    b, 's are the coefficients, and the    m 's are  the polynomials.    The 

number of terms    m    is  the order of the fit. 

Ralston  [8]  shows  that the  fi^st three orthogonal polynomials are: 

% - 1 (4.2.2) 

(^ - d/A (4.2.3) 

L + 1    J       3d2L ,,   ,  ,, 
5fc - -   2L _   I + 5 (4.2.4) 
^ 2L       1       (2L -1)/\Z 

where     A   and    L    are defined in Section 4.1.    If we sample    f(d)    at 

the points    d.   , where     j    varies over  the integers from    -L    to +L  , 

the sample coefficients are defined as 
+L 

I «V %<V 
b^-J^  . (».2.5) 

J-L 

Ralston shows that the sample coefficients are unbiased; that is, if 

we know the exact coefficients in (4.2.1), then 
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<tk|e>- bk . (4.2.6) 

Ralston also computes  the variances of the coefficients  for the case 

where the variance of    f(d)     is  independent of    d  : 

V<f|<^>-   v<f|C>- a2 

The  first three variances are  : 

^ 2 

b?   -—^  0        2L + 1 

(4.2.7) 

(4.2.8) 

3L a 
1 (L + 1)(2L + 1) 

Hi 
b2 

10L(2L -  l)a 
(2L + 3)(2L + 2)(2L + 1) 

(4.2.9) 

(4.2.10) 

By a derivation similar  "-o  the one  for the variances of the    b's     (see 

Ralston  [8, p.  247]),   it  is straightforward to show that  the covari- 

ances are zero : 

cov 
<bkbji|C>- 0  ,      k ^  X (4.2.11) 

Specializing Ralston's  results  to our problem,     <v|d,e>   plays  the 

role of    f(d)   ,    Taking the expectation of (4.1.1), we have 

<v id,e> - a + ^ <*,l.£|e>*4 h d2 . (4.2.12) 2   ^ = ^,— •   2 

Fitting this curve using the orthogonal polynomials  (4.2.2),   (4.2.3) 

and  (4.2.4),  the exact coefficients are ; 

b    - a + -i <s'F s lO   + ^L ^ ^h  A 

b1  -  0 

(4.2.13) 

(4.2.14) 
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b2.ss^ml (4.2.15) 

By direct calculation or by reference  to Chapter 2,  the exact solution 

is 

m^x <vld,e>   - <v|d(e),e> - a +-Ij «^'E _s|e> . (4.2.16) 

Suppose that instead of calculating the coefficients exactly, ve 

approximate them by the sampling procedure suggested in Section 4.1. 

Define  v. as the i   sample at the j   decision point. Then we 

can compute the sample expectation at each decision setting as 

n 
s 

-Cvld-.O*»^  jV /ns . (4.2.17) 

i=l 

where    n      is  the number of samples per decision setting.     If we sub- s 

stitute  (4.2.17)  into  (4.2.5)  as    f(d.)    and take the expectation, we 

find after  some algebraic manipulations, 

<b£|e> - bk  ,       k - 0,1,2  , (4.2.18) 

where the b^s are defined by (4.2.13), (4.2.14) and (4.2.15).  In 

other words <v|d ,£>  as defined by (4.2.17) is an unbiased estimator 

of <v|d.,C> , and therefore Ralston's results apply. 

The expected loss from using the approximate solution is 

<x|N,e> - <v|d(e),e> - <<v|d(e)a,e>ale;   . (4.2.19) 

The first term on the right of (4.2.19) is the exact solution from 

(4.2.16).  The second term is the expected solution based on sampling. 

To find an expression for it, we define the approximate expected value 
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based on the sample data as 

<v|d,e>a -   ^   b* ^(d)   . 
k-0 

(4.2.20) 

Maximizing (4.2.20), using (4.2.2). (4.2.3) and (4.2.4) for the poly- 

nomlals, we find the approximate optimal decision d(e)a : 

^(C) 
a m      2L -   1 21 

6L   , a 
b2 

(4.2.21) 

Substituting (4.2.21) into (4.2.20), and simplifying, we have 

b2 

(4.2.22) 

To take  the expectation of (4.2.22), we expand the reciprocal of    b* 

in a Taylor series about the mean    b * : 

b5 b9 (bO    ) 

LrJL 
>2     b2 ^2 

Taking the expectation of (4.2.22) and using (4.2.23), we have 

^       v 

<«|i<«)«.e>'|e;  . V + ^i V ■ ^^rk1 ^i (' - 4i) • 
b2      (b2 ) 

(4.2.24) 

Recalling that the means are given by (4.2.13) through (4 2.15) ant" 

using (4.2.8) through (4.2.10) for the variances, (4.2.24) becomes 

2 
<<v|d(e)a.e>|c> - a + -5 <S'E s|e> 3L 

(2L + 2)(2L +  l)h   £ 

+    1 720L4o2 

(2L +  3)(2L + 2)(2L +  1)(2L)(2L -   l)h2   f' 

(4.2.25) 

)• 
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Expression (4.1.6) follows directly from (4.2.25) by letting L and 

hence n, become large. 

4.3 Discussion of the Expected Loss from Rough Quantization 

Expression (4.2.22) provides a more sophisticated basis than 

(4.1.4) for discussing roujh quantization. We define the sharpness 

of the maximum at d(6)  as 

(4.3.1) 

where 

Av - <v|d(C),C> - <v|d»A,e> 

a2 - V<v|d(e),e^ . 

(4.3.2) 

(4.3.3) 

Using (4.2.10) for the quadratic value function, (4.3.1) becomes 

K 2    a' 

Using (4.3.4), Che final term in (4.2.25) may be written 

180 L4 X2 

(4.3.4) 

(2L + 3)(2L + 2)(2L + 1)(2L)(2L - 1)  ' (4.3.5) 

For large N , this term represents the error that Is Introduced by 

using  (2L + 1)  quantization levels Instead of N  levels. 

The term in (4.3.5) Is plotted in Fig. 4.2.  We sec that for 

sharp maxima rough quantization Introduces little error.  For maxima 

that are not sharp, the error is larger but insensitive to quantization. 

We conclude that although fine quantization Is always better than rough 

quantization, for practical purposes the sampling error depends only on 

the total number of samples and not on the coarseness of the quantization. 
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X Sharpness 

10 

8 

7 

6 

5 

4 

3 

0 L^i. 

Percentage 
Error* 

IX 

1.5X 

2.5Z 

7.5% 

501 

9       n. 

Number of decision levels 

Re)stive to one sample per level for large N 

Figure 4.2 Quantization error for a decision variable as a function of 

the sharpness of the maximum and the number of quantization 
levels. 
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CHAPTER 5 

APPLICATIONS 

5.0 Introduction 

This chapter Is the focal point of the thesis.  In Sections 5.1 

through 5.4 we apply the results of Chapters 2. 3 and U to  develop a 

systematic design framework.  It applies to problems with continuous 

decision variables.  The design is optimal in the sense that our goal 

is to make the marginal benefit of additional analysis equal to marginal 

cost.  In section 5.5 we discuss how the framework could be modified to 

apply to budget constrained design and to problems with discrete deci- 

sion variables. 

5.1 Preliminary Analysis 

In Sections 5.1 through 5.4 we consider the problem introduced in 

Section 2.3.  The deterministic model v(s,d)  can be approximated by 

a second order Taylor series about the mean of the state variables and 

the prior optimum decision.  The model v(s,d) may be very complex. 

A single evaluation of vQs.d)  on a computer may cost many dollars. 

To perform an exhaustive probabilistic analysis to find the exact 

optimum decision d(e)  would be prohibitively expensive  Our objec 

tive is to use preliminary data to identify cost effective additional 

analyses.  As input to our framework we require roughly encoded param- 

eters and deterministic sensitivity data. As output we reconnend the 

level of encoding for state variables, the proper detail of the treat- 

ment of risk preference, and the amount of computation.  We use 
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approximations  to keep  the cost and Input requirements of our analysis 

to a minimum. 

The Three Steps in the Preliminary Phase 

Figure 5.1 sumnarizes the preliminary phase.  Deterministic sen- 

sitivity analysis yields the deterministic optimum d      and the first 

and second partial derivatives of the state and decision variables at 

the operating point (s,i0)   •  For a general discussion of sensitivity 

analysis, see Howard [I].  For a specific discussion of the conversion 

of sensitivity data to approximate partial derivatives, see Howard [2, 

Appendix A]. 

Once we have thr sensitivity data we can normalize the state and 

decision variables so thct they are zero at the mean and deterministic 

optimum respectively : 

I " 0 (5.1.1) 

io-0 (5.1.2) 

This step is not essential, but it amplifies notation and data handl- 

ing.  Using the sensitivity data and the normalized variables, we can 

fit a quadratic Taylor series model to v(s,d) at  (s,d) = (0,0) : 

v^s.d) - a + b's + 2 s'E ^ + ^'G d + 4 d'H d (5.1.3) 

The final step is to encode the matric of covariances.  Howard [2, 

p. 511] suggests an encoding technique.  In many problems the state 

variables will be independent, reducing the task to encoding the vari- 

ances of the state variables.  In this case we may directly encode 

rough estimates of the variances, or we may estiTite them based on the 
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(START ) 

DETERMINISTIC SENrITIVITY ANALYSIS 

Perform deterministic sensitivity analysis to find d  the 
deterministic optimum and the first and second order-partial 
derivatives at d ■ d  and .s ■ J 

Ref: Howard [2, Appendix A] 

NORMALIZE AND FIT 

Normalize the state and decision vectors such that 

2 ■ o 
3-o 

and fit 
—o 

v(s,d) - afb\s + -i s'E  s + s'G d + -5 d'H d 

Ref: Section 2.3 

I 
ENCODE COVARIANCES 

Encode the covariance matrix 

Ref: Howard [2, p. 511] 

or 

Encode A and default to 

cov. - 0, i ^ J 
v    2. 

ov,, • s, - L/A , i 

Ref: Section 3.2 
IJ  "i 

c GO TO ENCODING DECISION 
) 

Figure 3.1  Preliminary analysis 
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ranges used for the sensitivity analysis. Conversion from a range to a 

variance involves the parameter A which is discussed in Section 5.2. 

Illustrative Example. The Entrepreneur''s Problem 

To illustrate the methodology of this chapter we shall apoly each 

new procedure to the Entrepreneur's Problem, which was introduced In 

Chapter 2. Expressing l:he profit  TT in millions of dollars and denot- 

ing the cost  ^c as s.  and the quantity Aq as s» > the coefficients 

of (5.1.3) are : 

198 (5.1.4) 

b'- [-1    17.58] (5.1.5) 

E - 
"0      0 ~] 

0   0.0497 
(5.1.6) 

G'- [0    0.835] (5.1.7) 

H - [ -3.67 ] (5.1.8) 

The covariance matrix and the risk aversion coefficient are : 

[10,000   0 ~| 

0    lOOj 
(5.1.9) 

Y ■ 0.004 (5.1.10) 

The Validity of the Approximations 

Once we complete the preliminary analysis, we check to rce if the 

approximations developed in Chapters 2 and 3 are applicable.  Figure 5.2 

illustrates the formal checks.  In Section 3.2 we developed expressions 

77 



I        iiniiiiipy Ti^pmnaia Iw.y <sswmmtmf^mmmm^^'^m      '"»    ' n"^ww^»ww»-^^niwr>--w   \m* ■ *mi^mi^mmmwmmmmmw^r   m HMUII.II» mwi 

Preliminary data 

Ref;   Figure 5.1 

Encode risk aversion 
coefficieit    y 

STAI.T 

II 
Calculate 

C 
FLAG 

<vn|e>-  (2.4.7) 

- (3.2.30) 

(3.2.31) 

(3.2.32) 

Figure 3.2      Checks  to see if approximations are valid 
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for three quantities that should be small relative to the value of in- 

formation of the state variables. If these conditions are not met, 

Fig. 5.2 indicates that the user should be warned. In this situation, 

careful modification of the framework, perhaps using the assumption of 

Section 3.2 that state variables are normal and independent, may sal- 

vage the analysis. To make the framework general enough to handle 

violations of t-he conditions would make it too complex to be of practical 

use. 

An informal check should be applied at this point. The expres- 

sions of Chapters 2 and 3 assume that the probability density func- 

tions are roughly centrally symmetric.  If the user feels that any 

third covariances are large, he should proceed with caution. The ex- 

pressions of Chapter 3, particularly (3.2.22), should help the user to 

assess the seriousness of an asymmetry. 

Application of the Checks to the Entrepreneur's Problem 

Applied to the Entrepreneur's Problem the three checks of Fig. 

5.2 are : 

<vc|C> 
26* FLAf^ 

50* FLAG2 

2* FTAG3 

V 

^c e> 

y 

^c e> 

(5.1.11) 

(5.1.12) 

(5.1.13) 

As we shall see in Section 5.3 the low value of 2 in the third check 

is an early warning that the Entrepreneur's Problem is highly risk sen- 

sitive. 

To check for the impact of asymmetry, suppose that the probability 
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distribution on Aq is lognormal with the same mean and variance as 

before.  The lower bound of the probability density function is -68 , 

corresponding to q - 0 .  From (3.2.22) third covariances are unim- 

portant if 

<£'£  s s' |e> « b'C 

Computing these quantities the inequality is 

(5.1.14) 

[0 26] « [0  1758] . (5.1.15) 

The assumed asymmetry produces negligible changes in the results. 

5.2 Encoding State Variables 

The first analytical option is whether to gather additional data 

about the state variables.  In theory the data about the state vari- 

ables could come from a variety of sources; from a simulation model, 

from an experiment, or from an expert.  As long as the prior variance 

of the posterior mean  <<v|D,£>|e)  can be assessed, the eva aation 

scheme of Fig. 5.3 applies.  In practice the most likely application is 

where the data comes from an encoding interview with the decision maker 

or his designated experts. At the end of this section we discuss how 

the input data might be generated for this rase. 

The iterative encoding procedure of Fig. 5.3 applies when the 

state variables are independent and the cost of encoding each variable 

is a constant K  .  If the encoding costs were a function of n  the 

number of questions in an encoding interview, then the preposterior 

variance would have to be specified as a function of n .  This would 

require experimental research on how the mean of a decision maker's 
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Preliminary data  Z- 
Ref; Fig. 5.1  _J 

For each i encode 

Ref: Section 5.2 

Ente 
encoding 
variable 

r the cost of  /" 
ding one      / 
able Ko    / 

Encode 

8i ' 8i 
Set 

\<sAi)ite>\t)-o/ 

^   lo- o 

START z 
For each    1 

<vD   |e>- (5.2.1) 

Set 

For each    i 

Ij -X1 + ^1|Di,e>|c 

STOP 

Figure 5.3  Iterative encoding of state variables 
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distribution varies during an interview. We leave this topic for 

further research.  For our analysis we assume that we either use the 

preliminary estimate or encode a distribution which the decision maker 

accepts as representing his state of information. 

The calculation for the value of the data is based on the ranking 

scheme from Chapter 2.  As tming that encoding a probability distribu- 

tion on one variable gives no information about of.her variables, the 

value of data on the ith variable <vn j6> is given by (2.4.8) 

specialized to the case where only the ith variance is non-zero: 

^Dje>" ■ i*lH"VHlDi'e>le> (5-2-i) 

The heart of the encoding procedure is the iterative loop in the 

middle of Fig. 5.3. We sort the values of encoding to form a list with 

the largest value  <vn |£> at the top.  If the value of encoding exceeds 

tbe cost we encode the Jth variable compleiiely, yielding a new mean and 

variance.  The variance   -Cs |D.,e>|C^ is zero after the complete en- 

coding, dropping i:he  j^ variable to the bottom of the list.  We 

coitinue until the maximum value of encoding is less than the cost. 

The iterative procedure is based on the assumption that the ioint 

value of clairvoyance on two state variables is equal to the sum of the 

individual values of clairvoyance.  The assumption is good if the joint 

value does not greatly exceed the marginal values. 

At the end of Fig. 5.3 we set the variance of any unencoded vari- 

able to the sum of the point estimate of the variance and the prior 

variance of the posterior mean.  These quantities are discussed in Sec- 

tion 2.4. 
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Encoding Variances 

The key to the encoding decision is estimating ^s1|D1,ß>|e>  and 

N^ll^l^lV *  Since both are measures of the dispersion of the 

distribution, they are related to j^ , the difference between the high 

and low estimates for s  . 

If  ^il6) i6 uniformly distributed between the high and low esti- 

mates, the variance is 

V<*i\t>'T2- (5.2.2) 

If {sje} is normally distributed with the high and low values each 

three standard deviations from the mean, the variance is 

W^-Te- (5.2.3) 

A reasonable model of the relationship between the variance and JL 

is 

'<.t|e>.4 (5.2.4) 

ex- Assuming that    ^s1|Di,e>l^     and     ^<»l|»te>|A      can be 

pressed as     i^    divided by    A^    and    ^    respectively and using 

(2.4.19),   the variance  is 

V<si|e>--r (5.2.5) 

where 

A \E ^v ' 
(5.2.6) 

Of course, assignment of A^ and ^    for any given problem depends 
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on how the decision maker or his designated analyst interpret the 

terms "high value" and "low value." Hopefully, during future decision 

analyses, data can be gathered on the relationship between  A^ and 

When we assume that A^ and A^ are the same for each variable, 

our encoding procedure ranks the variables by their approxinate values 

of clairvoyance. Even in this simple case, our analysis gives us in- 

sight. A common misconception is to assume that the importance of a 

state variable is measured by the first partial derivative of the value 

function.  In fact, the first partial derivative has nothing to do with 

the value of data for the risk indifferent problem with a quadratic 

value function. 

Encoding in the Entrepreneur's Problem 

Rather than specifying the prior variance of the posterior mean 

c rectly. we parameterize the solution on the ratio r : 

r = 
v<<vb.e>|e>  m hv 

<v|e> SE 
(5.2.7) 

The values of encoding for the state variables in the Entrepreneur's 

Problem are 

<vDi|e>- o 

«ar« |C> - 9.5 r . 

(5.2.8) 

(5.2.9) 

The  value  of imcoding  the  cost    tj     is  uro because  the partial deriva- 

tive of profit with respect  to cost and price  is  zero.     Since  the 

Entrepreneur's Problem does not  include  the option  to stop,   the costs 

84 



'■''■, ■"W""" ^mm^m^mm^r^^      -.-■>. iiinaiaimp im i n IIM    m w""   "    " 

will be incurred regardless of the pricing decision. There is no value 

in learning the exact value of the sunk costs. 

The cost of encoding K  should be approximately a thousand dol- 

.3 
lars or 10  million dollars.  Since we expect r to be in the range 

of 0.1 to 1.0 for a typical problem, the decision is clearly to encode 

s  and not to encode s. . 

5.3 The Choice of Risk Attitude 

Risk preference follows the encoding of state variables both in 

the chronology of decision analysis and in the complexity of computa- 

tion.  In this section we choose the appropriate risk attitude for the 

probability phase based on preliminary estimates of the risk aversion 

coefficient. 

The options for the probabilistic phase are: 

(i)   Linear utility where  y is zero, the decision maker 
is ris>-indifferent. 

(ii)  Exponential utility where y    is fixed, the decision 
maker has constant risk preference. 

(iii) Complete utility where  y is a function of wealth, 
the decision maker has wealth-sensitive risk 
preference. 

The Flow Chart 

Figure 5.4 summarizes the evaluation of the alternatives.  The 

preliminary attitude is sunmarized by the risk preference coefficient 

"y • The potential risk pxeference coefficients after a thorough en- 

coding of the decision maker's risk attitude and an accurate computa- 

tion ot the profit lottery are summarized by y . 

The costs K.- and K.- include education, assessment, and compu- 

tation relative to option (ii).  The negative of K,- is the savings 
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Updated Preliminary Data 

Ref; Figures 5.1, 5.3 

Encode y , y 

Ref: Section 5.3 

Encode 

-K«,  savings from using 

y m 0  ,    and 

K-o cost of using u(v) 

Encode the exact utility 
function u(v) 

7H 

f START J 

Calculate 

<v^|e>- (3.3.21) 

I   - (3.3.3) 
Y 

set v " V 

f   STOP ^<- set v ■ 0 

Figure 5.4  Choice of risk preference alternative 
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that would occur if risk preference were suppressed in the probabilis- 

tlc phase. K-j is the additional cost of encoding the decision maker's 

complete risk preference function and using it for computations. The 

logic for comparing costs ana  gains is shown at the bottom of Fig. 5.4. 

We assume that 

^23 SK12 (5.3.1) 

aid 

<v |e> s i (5.3.2) 
r   v 

so that level (iii) is not cost effective, if level (ii) is not. 

Discussion of Input Data 

The practical application of Fig. 5.4 depends on an accurate 

estimation of the preliminary risk attitude and of the costs.  We con- 

sider each below. 

The preliminary risk attitude can come from several sources. 

First, we could encode the entire risk preference function from an as- 

sistent.  Second, the analyst could examine the risk attitudes of simi- 

lar decision makers.  For example, we expect two corporations with the 

same assets and earnings to have approximately the same risk attitude. 

Third, and most promising, we can use modeling.  Suppose we assume that 

u(v)  is logarithmic : 

u(v) - iniv + a) (5.3.3) 

Then we can ask the decision maker the single question: 

Suppose you had the opportunity to call the toss of a 
fair coin. You win a dollars if you call correctly 
and you lose a/2 dollars if you are incorrect.  For 
what price a are you indifferent between playing 
and not playing? 
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The prize a is the same as the parameter a in (5.3.3), so that 

u(v)  is completely specified. 

The future risk attitude is described by how much y   varies from 

Y0 •  We define  YO 
as the coefficient which would make the certain 

equivalent approximation exact given the correct profit lottery and 

utility function, 

~<v ld(e) ,e> - <v [d(e) ,e> - -J Y, ^lice) ,e> (5.3.4) 

We identify three ways that  y  can vary from y  . 

First, the approximate mean is not exact.  We might estimate how 

much the risk aversion coefficient changes with changes in the mean by 

assuming that the true utilii, function is logarithmic.  The varience 

of the difference between the accurate and preliminary means of the 

profit lottery could then be used to impute a variance in y  .  The 

variance of the profit lottery mean is discussed in the next section. 

Second, the variance of the profit lottery may be large enough 

that exponential utility is not a good local approximation.  We can 

check this effect by assuming again that the true utility is logarith- 

mic.  Then we can calculate how much we would have to change  v to 

make the exponential certain equivalent equal to the logarithmic one. 

Third, even if the decision maker's risk attitude is adequately 

estimated by the exponential utility function, our preliminary estimate 

of the coefficient may be wrong.  We can directly encode how much the 

mean will shift during an encoding session.  Just as for state variable 

encoding, experimental data is helpful tu assessing potential mean 

shifts.  Spetzler [8] has made a start in this direction, 
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Computing the three risk coefficient variations described above 

should help in assigning y    the prior variance of the posterior risk 

coefficient. 

Costs 

The final question is costs.  The gains from going from level (ii) 

to level (i) should not be large.  By suppressing risk aversion, the 

analyst does not have to educate the decision maker or assess y   ac- 

curately.  Computationally, exponential utility is almost as tractable 

as linear utility. Exponential utility has the delta property; if a 

fixed number of dollars  6 is added to each prize in a lottery, the 

certain equivalent of the lottery is increased by 6 .  Because of the 

delta property, computation with exponential utility can be decomposed. 

The profit lottery can be generated without considering risk aversion 

or u^ill-y, and the certain equivalent can be computed later. 

By going from level (ii) to level (iii), we find that the costs 

rise sharply. The education and assessment costs can be large, espe- 

cially if the decision maker is an organization.  Spetzler's [8] study 

indicates that accurate determination of y is a time-consuming job. 

The computational burden is also large because we lose the delta prop- 

erty. 

Risk Preference in the Entrepreneur's Problem 

The key inputs for the Entrepreneur's Problem are the mean and 

variance of y    . From Section 5.1 we have 

Y ■ 0.004 . (5.3.5) 

To estimate the variance we compute tae asset level which would imply 

(5.3.5). Combining the definition of the local risk aversion coefficient 
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with the expression for logarithmic utility we have 

Y(
V
) 

u"(v) 
u'(v) v + a ' (5.3.6) 

where prime denotes differentiation. Evaluating at <v|d(6),6>= 200.5 

and Y ■ .004 , the asset level a is 

0.004 
- 200.5 - 49.5 . (5.3.7) 

Figure 5.5 shows the entrepreneur's normalized profit lottery. 

The expected value if 1.0 standard deviations above zero. The prior 

assets a are only 0.25 standard deviations. Therefore, if the out- 

come of the lottery is more than 1.25 standard deviations belcw the 

mean, the loss will exceed the entrepreneur's assets, resulting in 

bankruptcy. Assuming normality, there is an 117o chance of bankruptcy. 

Given a finite probability of bankruptcy the logarithmic certain 

equivalent for the luLt^ry is negative and arbitrarily large. Because 

the logarithmic and exponential certain equivalent vary widely, the 

actual risk aversion coefficient may be quite different from the pre- 

liminary estimate. A variance that reflects this uncertainty is 

Y - 0.0004 (5.3.8) 

The remaining inputs for Fig. 5.5 are K.« and K„» .  The sav- 

ings from using level (H -K, -, is the cost of encoding the risk aver- 

sion coefficient.  Like the cost of encoding, this amount is approxi- 

mately one thousand dollars : 

-K12 = 10 (5.3.9) 

We assume that the cost of encoding and using the complete risk 
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{v|d*(c).e} 

Probability of 
bankruptcy 
0.11 

Figure 5.5  The entrepreneur's profit lottery 
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preference  function is  ten thousand dollars  : 

K23 - 10"2 (5.3.10) 

Comparing the costs and benefits as required by the decision boxes 

of Fig. 5.5, we find that the best decision is clearly to encode and 

use the complete utility function. 

5.4 The Choice of a Computational Alternative 

The purpose of computation is to accurately estimate the optimum 

decision d(c) .  The options considered in this section are to use 

3(C)a the approximate optimum from Chapter 3 or to find a more accurate 

estimate through Monte Carlo simulation.  The analysis is limited to 

problems with a single decision variable. 

Using the preliminary estimate directly is the best alternative 

if it is accurate and the cost per evaluation of the deterministic model 

is high.  In this case our preliminary estimate of the optimum decision 

becomes our actual decision. 

Monte Carlo sampling is described in Chapter 4.  Random samples 

are drawn from  [s|6] . At each decision setting d  , an approxima- 

tiOii to <v|d.,C> is computed.  Then a least squares curve is fit 

through the means f.rid maximized. 

Inability to Estimate Tree Errors 

Logically, we would include a dacision tree as a computational 

alternative.  Decision f.ees are generated by discretizing both d and 

[s\t]  .    The optimum decision is computed by rolling back the tree. 

Unfortunately, the optimal tree for a quadratic value function has 

exactly one terminal node.  The problem is that errors for trees with 

two or more branches per state variable depend on partial derivatives 
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of greater than second order.  Since ve have suppressed these deriva- 

tives by using a quadratic value function, we have lost the ability to 

design decision trees. 

The Evaluation Scheme 

The evaluation scheme is shown in Fig. 5.6.  The only new input 

required is the cost per Monte Carlo sample K , which normally is 

dominated by the cost per evaluation of the deterministic model v(s,J) 

In Chapter 4 we show that the expected loss is a furction of the 

total sample size N , even if d is roughly quantized.  If the sample 

data swamps the prior data, the N* computed in Fig. 5.6 is the op- 

timal sample siza.  However, if N* is small we leave it to the user 

to decide whether to sample or not. 

Discussion 

Instead of leaving the final choice to the user, we could encode 

the prior variance of the posterior mean 

v<<v|N,s>le> (5.4.1) 

The sampling scheme of Chapter 4 would have to be modified to include 

prior data.  Then the calculation of optimal N* would include the 

decision; stop or sample. 

However, we feel that encoding the quantity in (5.4.1) is as dif- 

ficult as directly deciding to sample or not.  In most practical anal- 

yses we suspect the decision will clearly be to sample.  In this case 

the sample data will swamp the prior data, and our evaluation scheme 

eliminates unnecessary encoding. 
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Updated preliminary data 

Ref; Figs. 5.1, 5.3, 5.4 

Encode cost per 
sample K 7 
Choose Monte Carlo with 
N* samples or stop 

/ 

L 

(START) 

Compute optimal Monte Carlo 
sample size 

<jt|N,e>- (4.1.6) 

g(N)  - <AlN,e>-<A|lHl.g> 
Kc 

N* :  gN*) - 1 

"M STOP 

Figure 5.6  The choice of a computational procedure 
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Computation in the Entrepreneur's Problem 

Suppose we decide to compute the Entrepreneur's profit for prices 

from 15 to 35.  If the cost per sample K  is $.10, then the optimum 

sample size N* is 

N* - 820 . (5.4.2) 

Since we evaluated v(s,d)  far fewer than 820 times during the 

preliminary analysis, we expect the Mon-e Carlo data to swamp our prior 

knowledge.  Therefore, the results of Chapter 4 hold, and the decision 

is clearly to sample.  The cost of the sampling program is $80, neg- 

ligible compared to the encoding costs. 

Conclusion of the Entrepreneur's Problem 

Our framework has given us insight into the Entrepreneur's Problem. 

Although computation is necessary, it is routine.  Encoding the state, 

variable  Aq is important.  Using the rough estimate of  lAq|ß] would 

result in an expected loss of about 5% of the expected value of the 

lottery.  The crucial issue is risk preference.  Because the lottery is 

the entrepreneur's largest asset, we expect risk preference to be the 

dominant issue. The large value of additional risk assessment, 50% of 

the expected value of the lottery, indicates that the framework has pin- 

pointed the critical issue. 

5.5 Extensions to Budget Constrained Design and to Discrete Decisions 

Both budget constrained design and discrete decisions should be 

straightforward to include within our framework. 

For budget constrained design we need to compute an approximate 

cost benpfit ratio for each option.  For encoding we compute the expected 
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value of saiaple data divided by the cost K  for each variable. For 

risk preference we divide the gain from going from level (i) to level (ii) 

X  by the cost -Kj, . Similarly, we compute the ratio of <v |e> to 

K23 for the level (ii) to level (iii) transition. For Monte Carlo com- 

putation the benefit to cost ratio is computed as a function of the num- 

ber of samples N in Fig. 5.6. 

Budget constrained design would balance the overall effort in each 

of the three areas. As nearly as the discrete nature of the options 

would allow, the last variable encoded and the last sample taken would 

have the same benefit-cost ratio as the risk preference level chosen. 

The framework could be modified to treat problems with discrete 

decision variables by basing the value of information on clofd loop 

sensitivities as in Section 2.5.  The risk-preference evdiuation would 

require a closed loop risk sensitivity.  The comparison of Monte Carlo 

and trees is simplified since the decision variable is already dis- 

cretized.  However, tree errors remain difficult to compute. 
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CHAPTER 6 

SUMMARY AND SUGGESTIONS FOR FUTURE WORK 

The objective of the  thesis was  to create a paradigm to evaluate 

the economic value of analysis.    To achieve  that goal in Chapter 5,  we 

derived  theoretical results in Chanters  2,   3,  and 4. 

Summary 

The theorem of Chapter 2 introduced the key concept that the value 

of data for a continuous quadratic problem is proportional to (.he prior 

covariance of the posterior means of the state variables.  We showed that 

special cases of the theorem are well known. The conJtant of proportion- 

ality in the theorem contained only second order partial derivatives, 

which could be evaluated from closed loop sensitivities,  lising the idea 

of compensation we derived ü methodology which ranks the state variables 

accurately for a broad class of decision problems.  Tie final conclusion 

from Chapter 2 was that the loss from deliberate introduction of error had 

the same form as the value of data with squared means replacing variances. 

The theorem of Chapter 3 gave the value of data for the risk- 

sensitive quadratic problem using the certain equivalent approximation. 

To operationalize the result we assumed that the state variables were 

normal and independent. More interesting than the theorem itself were 

the conditions under which the risk-senslcive value of data reduced to 

the risk-indifferent value of data.  When these conditions held, we 

found that the risk aversion coefficient could be treated as a state 

variable for value of data calculations. 
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Chapter 4 considered the penalty for rough quantization of a deci- 

sion variable. We found that although fine quantization was superior 

to rough quantization, the expected loss from rough quantization was 

negligibly small. The sensitive parameter was sharpness, a measure of 

the curvature of the evicted value over the range of tne derision 

variable- 

Chapter 5 applied the results cf Chapters 2, 3, and 4. The flow- 

charts were presented to help the analyst to balance encoding, risk 

preference, and conputatlcn for future decision analyses. 

Further ReB.'arch 

The results of this thesis can be regarded as a black box.  The 

inputs are estimates of how something might change during a data gener- 

ating process and the output Is a dollar valuation of the potential 

change. The most valuable future research would be a series of boxes 

which could be attached to the front of our black box. The future 

boxes would contain experimental and historical data. From data that 

is easy to encode, the new boxes would generate the input for our black 

boxes. 

For encoding state variables, two boxes would be useful. The in- 

put to the first would be elementary data such as means anJ ranges of 

state variables. The output would divide the prior variance into the 

prior expectation of the posterior variance and the prior variance of 

the posterior mean. Research comparing preliminary estimates to 

thoroughly encoded probability density functions would be required to 

generate the box. 

The second encoding box would predict the variance of the posterior 

mean as a function of the length of the encoding interview. Since the 
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cost should also be proportional to the length of the interview, this 

box would allow us to compute the value of partial encoding.  The re- 

quired research would include the design of good encoding techniques 

as well as the recording of mean shifts during encoding sessions. 

The box required for risk preference is similar to the second 

encoding box.  It should predict the potential shift of the risk aver- 

sion coefficient as a function of the completeness of the encoding. 

Computation ts probably the most challenging area. A box is 

needed for probability trees.  It should pndict the errors as a func- 

tion of the number of terminal nodes in a tree.  The obstacle co be 

overcome is that the errors in a probability tree are proportional Mgh 

order partial derivatives of the value function with respect to the 

state variables.  Therefore, the quadratic model of the value function 

is not appropriate. 

The application of the economics of decision analysis depends on 

careful modeling so that encoding the potential data does not become a 

burden. 

99 

--'--- --    ■    ----' ■ ■■ - - -—----»—"— ...--^ 



~—^^WPI "  

LIST OF REFERENCES 

[1] De Groot, Morris.  Optimal Statistical Decisions. McGraw-Hill 
1970.   

[2] Howard, Ronald A.  "The Foundations of Decision Analysis," IEEE 
Transactions on Systems Science and Cybernetics. Vol. SSC-4 
No. 3, Sept. 1968. 

[3] Howard, Ronald A.  "Proximal Decision Analysis," Management Science 
Vol. 17, No. 9, May 1971.  ' 

[4] Matheson, James E.  "The Economic Value of Analysis and Computa- 
tlon," IEEE Transactions on Systems Science and Cybernetics 
Vol. SSC-4, No. 3, Sept. 1968. ' 

[5] Pratt, John W.  "Risk Aversion in the Small and in the Large," 
Ecouometrica. Vol. 32, No. 1-2, Jan.-April 1964. 

[6] 0.irfa, Howard A.  Decision Analysis. Introductory Lectures on 
Choices under Uncertainty. Addison Wesley, 1968. 

[7] Raiffa, Howard A., and Schalifer, Robert. Applied Statistical 
Decision Theory. M.I.T. Press, 2nd Edition, 1968. 

[8] Ralston, Anthony. A First Course in Numerical Analysis. 
McGraw-Hill, 1965.   

[9] Spetzler, Carl.  "The Development of a Corporrte Risk Policy for 
Capital Investment Decisions,' IEEE Transactions on Systems 
Science and Cybernetics. Vol. SSC-4, No. 3, Sept. 1968. 

100 

■ -■^ • * 


